2017年江西省中考数学试题(解析卷)(共33页).doc
《2017年江西省中考数学试题(解析卷)(共33页).doc》由会员分享,可在线阅读,更多相关《2017年江西省中考数学试题(解析卷)(共33页).doc(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2017年江西省中考数学试卷一、选择题(本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.)16的相反数是()ABC6D62在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列行程最长,途经城市和国家最多的一趟专列全程长13000km,将13000用科学记数法表示应为()A0.13105B1.3104C1.3105D131033下列图形中,是轴对称图形的是()ABCD4下列运算正确的是()A(a5)2=a10B2a3a2=6a2C2a+a=3aD6a62a2=3a35已知一元二次方程2x25x+1=0的两个根为x1,x
2、2,下列结论正确的是()Ax1+x2=Bx1x2=1Cx1,x2都是有理数Dx1,x2都是正数6如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B当E,F,G,H是各边中点,且ACBD时,四边形EFGH为矩形C当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形二、填空题(本大题共6小题,每小题3分,满分18分,将答案填在答题纸上)
3、7函数y=中,自变量x的取值范围是 8如图1是一把园林剪刀,把它抽象为图2,其中OA=OB若剪刀张开的角为30,则A= 度9中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数如图,根据刘徽的这种表示法,观察图,可推算图中所得的数值为 10如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是 11已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是 12已知点A(0,4),B(7,0),C(7,4),连接AC,BC得到矩形AOBC,点D的边AC上
4、,将边OA沿OD折叠,点A的对应边为A若点A到矩形较长两对边的距离之比为1:3,则点A的坐标为 三、解答题(本大题共5小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.)13(1)计算:;(2)如图,正方形ABCD中,点E,F,G分别在AB,BC,CD上,且EFG=90求证:EBFFCG14解不等式组:,并把解集在数轴上表示出来15端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求
5、出小贤取出的两个都是蜜枣粽的概率16如图,已知正七边形ABCDEFG,请仅用无刻度的直尺,分别按下列要求画图(1)在图1中,画出一个以AB为边的平行四边形;(2)在图2中,画出一个以AF为边的菱形17如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”约为20,而当手指接触键盘时,肘部形成的“手肘角”约为100图2是其侧面简化示意图,其中视线AB水平,且与屏幕BC垂直(1)若屏幕上下宽BC=20cm,科学使用电脑时,求眼睛与屏幕的最短距离AB的长;(2)若肩膀到水平地面的距离DG=100cm,上臂DE=30cm,下臂EF水平放置在键盘上,其到地面的距离FH=72cm请判断此时是否符合
6、科学要求的100?(参考数据:sin69,cos21,tan20,tan43,所有结果精确到个位)四、(本大题共3小题,每小题8分,共24分).18为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图种类ABCDE出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有 人,其中选择B类的人数有 人;(2)在扇形统计图中,求A类对应扇形圆心角的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C
7、这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数19如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短设单层部分的长度为xcm,双层部分的长度为ycm,经测量,得到如下数据:单层部分的长度x(cm)46810150双层部分的长度y(cm)737271(1)根据表中数据的规律,完成以下表格,并直接写出y关于x的函数解析式;(2)根据小敏的身高和习惯,挎带的长度为120cm时,背起来正合适,请求出此时单层部分的长度;(3)设挎带的长度
8、为lcm,求l的取值范围20如图,直线y=k1x(x0)与双曲线y=(x0)相交于点P(2,4)已知点A(4,0),B(0,3),连接AB,将RtAOB沿OP方向平移,使点O移动到点P,得到APB过点A作ACy轴交双曲线于点C(1)求k1与k2的值;(2)求直线PC的表达式;(3)直接写出线段AB扫过的面积五、(本大题共2小题,每小题9分,共18分).21如图1,O的直径AB=12,P是弦BC上一动点(与点B,C不重合),ABC=30,过点P作PDOP交O于点D(1)如图2,当PDAB时,求PD的长;(2)如图3,当=时,延长AB至点E,使BE=AB,连接DE求证:DE是O的切线;求PC的长2
9、2已知抛物线C1:y=ax24ax5(a0)(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;(2)试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2的表达式;(3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的值六、(本大题共12分)23我们定义:如图1,在ABC看,把AB点绕点A顺时针旋转(0180)得到AB,把AC绕点A逆时针旋转得到AC,连接BC当+=180时,我们称ABC是ABC的“旋补三角形”,ABC边BC上的中线AD叫做ABC的“旋补中线”,点A叫做“旋补中心”特例感知:(1)在图2,图
10、3中,ABC是ABC的“旋补三角形”,AD是ABC的“旋补中线”如图2,当ABC为等边三角形时,AD与BC的数量关系为AD= BC;如图3,当BAC=90,BC=8时,则AD长为 猜想论证:(2)在图1中,当ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明拓展应用(3)如图4,在四边形ABCD,C=90,D=150,BC=12,CD=2,DA=6在四边形内部是否存在点P,使PDC是PAB的“旋补三角形”?若存在,给予证明,并求PAB的“旋补中线”长;若不存在,说明理由2017年江西省中考数学试卷参考答案与试题解析一、选择题(本大题共6个小题,每小题3分,共18分.在每小题给出的四个选
11、项中,只有一项是符合题目要求的.)16的相反数是()ABC6D6【考点】14:相反数【分析】求一个数的相反数,即在这个数的前面加负号【解答】解:6的相反数是6,故选C2在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列行程最长,途经城市和国家最多的一趟专列全程长13000km,将13000用科学记数法表示应为()A0.13105B1.3104C1.3105D13103【考点】1I:科学记数法表示较大的数【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数
12、;当原数的绝对值1时,n是负数【解答】解:将13000用科学记数法表示为:1.3104故选B3下列图形中,是轴对称图形的是()ABCD【考点】P3:轴对称图形【分析】根据轴对称图形的概念求解【解答】解:A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、是轴对称图形,故C符合题意;D、不是轴对称图形,故D不符合题意;故选:C4下列运算正确的是()A(a5)2=a10B2a3a2=6a2C2a+a=3aD6a62a2=3a3【考点】4I:整式的混合运算【分析】根据整式的运算法则即可求出答案【解答】解:(B)原式=6a3,故B错误;(C)原式=a,故C错误;(D)原式=3a
13、4,故D错误;故选(A)5已知一元二次方程2x25x+1=0的两个根为x1,x2,下列结论正确的是()Ax1+x2=Bx1x2=1Cx1,x2都是有理数Dx1,x2都是正数【考点】AB:根与系数的关系【分析】先利用根与系数的关系得到x1+x2=0,x1x2=0,然后利用有理数的性质可判定两根的符合【解答】解:根据题意得x1+x2=0,x1x2=0,所以x10,x20故选D6如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A当E,F,G,H是各边中点,且AC=BD时,
14、四边形EFGH为菱形B当E,F,G,H是各边中点,且ACBD时,四边形EFGH为矩形C当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形【考点】LN:中点四边形【分析】连接四边形各边中点所得的四边形必为平行四边形,根据中点四边形的性质进行判断即可【解答】解:A当E,F,G,H是各边中点,且AC=BD时,EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B当E,F,G,H是各边中点,且ACBD时,EFG=FGH=GHE=90,故四边形EFGH为矩形,故B正确;C当E,F,G,H不是各边中点时,EFHG,EF=HG,故
15、四边形EFGH为平行四边形,故C正确;D当E,F,G,H不是各边中点时,四边形EFGH可能为菱形,故D错误;故选:D二、填空题(本大题共6小题,每小题3分,满分18分,将答案填在答题纸上)7函数y=中,自变量x的取值范围是x2【考点】E4:函数自变量的取值范围【分析】根据二次根式的性质,被开方数大于等于0,就可以求解【解答】解:依题意,得x20,解得:x2,故答案为:x28如图1是一把园林剪刀,把它抽象为图2,其中OA=OB若剪刀张开的角为30,则A=75度【考点】KH:等腰三角形的性质【分析】根据等腰三角形的性质和三角形的内角和即可得到结论【解答】解:OA=OB,AOB=30,A=75,故答
16、案为:759中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数如图,根据刘徽的这种表示法,观察图,可推算图中所得的数值为3【考点】11:正数和负数【分析】根据有理数的加法,可得答案【解答】解:图中表示(+2)+(5)=3,故答案为:310如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是8【考点】U2:简单组合体的三视图;I9:截一个几何体【分析】根据从上边看得到的图形是俯视图,可得答案【解答】解:从上边看是一个梯形:上底是1,下底是3,两腰是2,周长是1+2+2+3=8,故答案为:8
17、11已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是5【考点】W5:众数;W1:算术平均数;W4:中位数【分析】根据平均数与中位数的定义可以先求出x,y的值,进而就可以确定这组数据的众数即可【解答】解:一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,(2+5+x+y+2x+11)=(x+y)=7,解得y=9,x=5,这组数据的众数是5故答案为512已知点A(0,4),B(7,0),C(7,4),连接AC,BC得到矩形AOBC,点D的边AC上,将边OA沿OD折叠,点A的对应边为A若点A到矩形较长两对边的距离之比为1:3,则
18、点A的坐标为:(,3)或(,1)或(2,2)【考点】PB:翻折变换(折叠问题);D5:坐标与图形性质;LB:矩形的性质【分析】由已知得出A=90,BC=OA=4,OB=AC=7,分两种情况:(1)当点A在矩形AOBC的内部时,过A作OB的垂线交OB于F,交AC于E,当AE:AF=1:3时,求出AE=1,AF=3,由折叠的性质得:OA=OA=4,OAD=A=90,在RtOAF中,由勾股定理求出OF=,即可得出答案;当AE:AF=3:1时,同理得:A(,1);(2)当点A在矩形AOBC的外部时,此时点A在第四象限,过A作OB的垂线交OB于F,交AC于E,由AF:AE=1:3,则AF:EF=1:2,
19、求出AF=EF=BC=2,在RtOAF中,由勾股定理求出OF=2,即可得出答案【解答】解:点A(0,4),B(7,0),C(7,4),BC=OA=4,OB=AC=7,分两种情况:(1)当点A在矩形AOBC的内部时,过A作OB的垂线交OB于F,交AC于E,如图1所示:当AE:AF=1:3时,AE+AF=BC=4,AE=1,AF=3,由折叠的性质得:OA=OA=4,在RtOAF中,由勾股定理得:OF=,A(,3);当AE:AF=3:1时,同理得:A(,1);(2)当点A在矩形AOBC的外部时,此时点A在第四象限,过A作OB的垂线交OB于F,交AC于E,如图2所示:AF:AE=1:3,则AF:EF=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 江西省 中考 数学试题 解析 33
限制150内