【高一数学】三角函数典型例题剖析与规律总结(共6页).doc
《【高一数学】三角函数典型例题剖析与规律总结(共6页).doc》由会员分享,可在线阅读,更多相关《【高一数学】三角函数典型例题剖析与规律总结(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上三角函数典型例题剖析与规律总结山东 田振民一:函数的定义域问题1. 求函数的定义域。分析:要求的定义域,只需求满足的集合,即只需求出满足的值集合,由于正弦函数具有周期性,只需先根据问题要求,求出在一个周期上的适合条件的区间,然后两边加上即可。解:由题意知需,也即需在一周期上符合的角为,由此可得到函数的定义域为小结:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。(2)若函数是分式函数,则分母不能为零。(3)若函数是偶函数,则被开方式不能为负。(4)若函数是形如的函数,则其定义域由确定。(5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义同时还
2、要使实际问题有意义。二函数值域及最大值,最小值(1)求函数的值域例。求下列函数的值域(1) (2)分析:利用与进行求解。解:(1)(2)评注:一般函数的值域求法有:观察法,配方法判别式法,反比例函数法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。(2)函数的最大值与最小值。例。求下列函数的最大值与最小值(1) (2)(3) (4)分析:(1)(2)可利用sinx,cosx的值域求解求解过程要注意自变量的去值范围(3)(4)可利用二次函数在闭区间上求最值得方法。解:(1) (2)(3) 当,即时,有最小值;当,即,有最大值1。(4)小结:求值域或最大值,最
3、小值的问题,一般的依据是:(1)sinx,cosx的有界性;(2)tanx的值可取一切实数;(3)连续函数在闭区间上存在最大值和最小值。根据上面的原则,常常把给出的函数变成以下几种形式;(1)一次形式(2)或的形式,通过来确定或其他变形来确定。三:函数的周期性例 求下列函数的周期分析:该例的两个函数都是复合函数,我们可以通过变量的替换,将它们归结为基本三角函数去处理。(1) 把看成是一个新的变量,那么的最小正周期是,就是说,当且必须增加到时,函数的值重复出现,而所以当自变量增加到且必须增加到时,函数值重复出现,因此,的周期是。(2) 即的周期是。小结:由上面的例题我们看到函数周期的变化仅与自变
4、量的系数有关。一般地,函数或(其中为常数,的周期。四函数的奇偶性例 判断下列函数的奇偶性分析:可利用函数奇偶性定义予以判断。解:(1)函数的定义域关于原点对称。(2函数应满足函数的定义域不关于原点对称。函数既不是奇函数又不是偶函数。评注:判断函数奇偶性时,必须先检查定义域是否关于原点对称的区间,如果是,再验证是否等于或,进而判断函数的奇偶性,如果不是,则该函数必为非奇非偶函数。五:函数的单调性例:下列函数,在上是增函数的是( ) 分析:解:与在上都是减函数,排除,知在内不具有单调性,又可排除,应选。小结:求形如的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:练习:1. 函数的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高一数学 数学 三角函数 典型 例题 剖析 规律 总结
限制150内