初中数学定义、定理、公理、公式证明汇编(共12页).doc
《初中数学定义、定理、公理、公式证明汇编(共12页).doc》由会员分享,可在线阅读,更多相关《初中数学定义、定理、公理、公式证明汇编(共12页).doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上初中数学定义、定理、公理、公式专心-专注-专业直线、线段、射线 七上p128 1. 过两点有且只有一条直线.(简:两点决定一条直线)七上p132 2.两点之间线段最短 七上p142 3.同角或等角的补角相等.同角或等角的余角相等.七下p44. 过一点有且只有一条直线和已知直线垂直 七下p65. 直线外一点与直线上各点连接的所有线段中,垂线段最短. (简:垂线段最短)平行线的判断七下p131.平行公理 经过直线外一点,有且只有一条直线与这条直线平行. 七下p132.如果两条直线都和第三条直线平行,这两条直线也互相平行(简:平行于同一直线的两直线平行)七下p143.同位角
2、相等,两直线平行. 七下p144.内错角相等,两直线平行. 七下p155.同旁内角互补,两直线平行. 平行线的性质七下p201.两直线平行,同位角相等. 2.两直线平行,内错角相等. 3.两直线平行,同旁内角互补. 三角形三边的关系七下p641.三角形两边的和大于第三边、三角形两边的差小于第三边.三角形角的关系七下p731. 三角形内角和定理 三角形三个内角的和等于180.2.直角三角形的两个锐角互余.已知:Rt,C=90求证:A+B=90证明:C=90,A+B+C=180 A+B=90七下p753.三角形的一个外角等于和它不相邻的两个内角的和. 4. 三角形的一个外角大于任何一个和它不相邻的
3、内角.全等三角形的性质、判定八上p31.全等三角形的对应边、对应角相等.八上p92.边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等. 八上p113. 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等. 八上p124.推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等.八上p75. 边边边公理(SSS) 有三边对应相等的两个三角形全等. 八上p146. 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等. 角的平分线的性质、判定八上p20性质:在角的平分线上的点到这个角的两边的距离相等.八上p21判定:到一个角的两边的距离相同的
4、点,在这个角的平分线上.等腰三角形的性质八上p501.等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角).2.推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 .已知:中,AB=AC,AD是BAC的角平分线求证:AD平分BC,ADBC.证明:AB=AC,AD是BAC的角平分线 AD平分BC,ADBC.(三线合一)八上p503.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合.八上p544.推论3 等边三角形的各角都相等,并且每一个角都等于60 .等腰三角形判定八上p521等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 八上p
5、542.三个角都相等的三角形是等边三角形. 八上p543.有一个角等于60的等腰三角形是等边三角形.线段垂直平分线的性质、判定八上p331. 定理: 线段垂直平分线上的点和这条线段两个端点的距离相等 .八上p332.逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 3.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合. 轴对称、中心对称、 平移、旋转 八上p301. 关于某条直线对称的两个图形是全等形 八上p32八上p322.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 八上p333.两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在
6、对称轴上 八上p324.若两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称. 九上p645.关于中心对称的两个图形是全等的. 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.九上p646. 若两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点成中心对称.九上p57 p62 7.平移或旋转前后的图形是不变的.中心对称是旋转的特殊形式。八下p65勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 .八下p73勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2 ,那么这个三角形是直
7、角八上p55直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半.八下p95直角三角形斜边上的中线等于斜边上的一半.n边形、四边形的内角和、外角和七下p821.四边形的内角和等于360. 七下p832.四边形的外角和等于360七下p823.多边形内角和定理 n边形的内角的和等于(n-2)180.七下p83.推论 任意多边的外角和等于360.平行四边形性质八下p841.平行四边形的对角相等. 八下p842.平行四边形的对边相等. 3.夹在两条平行线间的平行线段相等. 已知:直线ab,线段ABCD.求证:AB=CD.abABCD证明:ab, ABCD,四边形ABDC是平行四边形AB=
8、CD八下p854.平行四边形的对角线互相平分.平行四边形判定八下p831.两组对边分别平行的四边形是平行四边形.八下p872.两组对角分别相等的四边形是平行四边形. 八下p873.两组对边分别相等的四边形是平行四边形. 八下p874.对角线互相平分的四边形是平行四边形. 八下p885. 一组对边平行相等的四边形是平行四边形 八下p94矩形性质1. 矩形的四个角都是直角 .2. 矩形的对角线相等.矩形判定八下p951.有一个角是直角的平行四边形是矩形.八下p962.有三个角是直角的四边形是矩形.八下p963. 对角线相等的平行四边形是矩形 .八下p98菱形性质1、菱形的四条边都相等.2. 菱形的
9、对角线互相垂直,并且每一条对角线平分一组对角. 3、菱形面积=对角线乘积的一半,即证明:菱形被两条对角线分成四个全等的直角三角形,且菱形对角线互相平分 设菱形对角线长为x,y则S菱形=41/2(x/2y/2)=1/2xy 所以菱形的面积等于其对角线乘积的一半 八下p99菱形判定1.有一组邻边相等的平行四边形是菱形2.四边都相等的四边形是菱形 3.对角线互相垂直的平行四边形是菱形.八下p100正方形性质1.正方形的四个角都是直角,四条边都相等.2.正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角. 正方形判定八下p1001.四个角都是直角,四条边都相等的四边形是正方形2.对角线互
10、相垂直平分且相等的四边形是正方形.证明:对角线互相平分平行四边形;对角线互相垂直的平行四边形菱形;对角线相等的平行四边形矩形形;菱形+矩形正方形八下p107等腰梯形性质1.等腰梯形在同一底上的两个角相等.2.等腰梯形的两条对角线相等. 等腰梯形判定八下p1081.同一底上的两个角相等的梯形是等腰梯形2.对角线相等的梯形是等腰梯形. 已知:梯形ABCD中,ADBC,AC=BD.求证:梯形ABCD是等腰梯形。证明: 经过梯形一腰的中点与底平行的直线,必平分另一腰. 已知:梯形ABCD中,ADBCEF,其中E是AB中点。求证:F是CD中点证明:连接AC交EF于点GADBCEFAEGABCE是AB中点
11、同理可证F是CD中点. 经过三角形一边的中点与另一边平行的直线,必平分第三边.(证法参照上题)八下p89三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半 ,S=Lh 已知:梯形ABCD中,ADBC, EF是梯形的中位线,设AD=a,BC=b,EF=l,梯形高为h。求证: S=Lh证明:连接AF交BC延长线与G点九下p36 比例的基本性质 如果a:b=c:d ad=bc 相似三角形判定九下p421.定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.九下p462.两角对应相等,两三角形相似. 九下p
12、443.两边对应成比例且夹角相等,两三角形相似 九下p434.三边对应成比例,两三角形相似九下p475.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.已知:RTABC和RTDEF,AC与DF为斜边,AB:DE=AC:DF求证:RTABCRTDEF证明:由勾股定理得:BC= EF=设AB:DE=AC:DF=kAB:AC=DE:DF=k(AB:AC)=(DE:DF)=kAB=kAC,DE=kDFBC= = EF= =BC:EF=:=AC:DF=AB:DE三边对应成比例RTABCRTDEF 相似三角形性质九下p521. 相似三角形对应高
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 定义 定理 公理 公式 证明 汇编 12
限制150内