二次函数中考应用题大全(共15页).doc
《二次函数中考应用题大全(共15页).doc》由会员分享,可在线阅读,更多相关《二次函数中考应用题大全(共15页).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上中考二次函数与实际问题大全利用二次函数解决实际问题关键是把实际问题转化为二次函数模型,有时要根据实际问题的情境建立平面直角坐标系,建立坐标系以简单为原则,例1写出下列各函数关系,并判断它们是什么类型的函数圆的面积y(cm2)与它的周长x(cm)之间的函数关系;某种储蓄的年利率是1.98%,存入10000元本金,若不计利息税,求本息和y(元)与所存年数x之间的函数关系;菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.例2:在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cms的速度移动,同时
2、点Q从点B出发沿BC边向点C以2cms的速度移动,如果P、Q两点同时出发,分别到达B、C两点后就停止移动(1)运动第t秒时,PBQ的面积y(cm)是多少?(2)此时五边形APQCD的面积是S(cm),写出S与t的函数关系式,并指出自变量的取值范围(3)t为何值时s最小,最小值时多少?例3:已知边长为4的正方形截去一个角后成为五边形ABCDE(如图),其中AF=2,BF=1试在AB上求一点P,使矩形PNDM有最大面积 解:设矩形PNDM的边DN=x,NP=y,则矩形PNDM的面积S=xy(2x4)易知CN=4-x,EM=4-y过点B作BHPN于点H则有AFBBHP,即,此二次函数的图象开口向下,
3、对称轴为x=5,当x5时,函数值随的增大而增大,对于来说,当x=4时,练习1 某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40m的栅栏围成若设花园的宽为x(m) ,花园的面积为y(m)(1)求y与x之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x取何值时,花园的面积最大,最大面积是多少?解: 二次函数的顶点不在自变量的范围内,而当内,随的增大而减小,当时,(平方米)答:当米时花园的面积最大,最大面积是187.5平方米2练习2 如图,把一张长10cm,宽8cm的矩形硬纸
4、板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计)(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由; 解:(1)设正方形的边长为cm,则即解得(不合题意,舍去),剪去的正方形的边长为1cm(2)有侧面积最大的情况设正方形的边长为cm,盒子的侧面积为cm2,则与的函数关系式为:即改写为当时,即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2 例4一位运动员在距篮下4米处跳起投篮,球
5、运行的路线是抛物线,当球运行的水平距离为2.5米时,达到的最大高度是3.5米,然后准确落入篮圈,已知篮球中心到地面的距离为3.05米,根据题意建立直角坐标系,并求出抛物线的解析式。该运动员的身高是1.8米,在这次跳投中,球在头顶上方0.25米,问:球出手时,他跳离地面的高度是多少?练习 某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽AB=4m,顶部C离地面高度为44m现有一辆满载货物的汽车欲通过大门,货物顶部距地面28m,装货宽度为24m请判断这辆汽车能否顺利通过大门最大利润问题例5:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降
6、价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?练习 某商场销售一批名牌衬衫,平均每天售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天多售出2件。若商场平均每天要盈利1200元,每件衬衫应降价多少元?若每件衬衫降价x 元时,商场平均每天盈利 y元,写出y与x的函数关系式。例6 某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台(
7、1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少? 练习1某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据:销售价x(元/千克)25242322销售量y(千克)2000250030003500(1)在如图5的直角坐标系内,作出各组有序数对(x,y)所对应的点。连接各点并观察所得图象,判断y与x之间的函数关系,求出y与x之间
8、的函数关系式。(2)若樱桃进价为每千克13元,试求销售利润P(元)与销售单价x(元/千克)之间的函数关系式,当x取何值时,P的值最大? 习题1二次函数,当x=_ ,_时,y有最_ _值,这个值是2某一抛物线开口向下,且与x轴无交点,则具有这样性质的抛物线的表达式可能为 (只写一个),此类函数都有_大_值(填“最大”“最小”)3不论自变量x取什么实数,二次函数y=2x26x+m的函数值总是正值,你认为m的取值范围是,此时关于一元二次方程2x26x+m=0的解的情况是_ _(填“有解”或“无解”) 4小明在某次投篮中,球的运动路线是抛物线的一部分,如图所示,若命中篮圈中心,则他与篮底的距离L是 米
9、 5在距离地面2m高的某处把一物体以初速度V0(m/s)竖直向上抛出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:S=V0t-gt2(其中g是常数,通常取10m/s2),若V0=10m/s,则该物体在运动过程中最高点距离地面_ _m 6影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数有研究表明,晴天 在某段公路上行驶上,速度为V(km/h)的汽车的刹车距离S(m)可由公式S=V2确定;雨天行驶时,这一公式为S=V2如果车行驶的速度是60km/h,那么在雨天行驶和晴天行驶相比,刹车距离相差 _米7将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个若
10、这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价 _元,最大利润为_ _元 8如图,一小孩将一只皮球从A处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A距地面的距离OA为1 m,球路的最高点B(8,9),则这个二次函数的表达式为_,小孩将球抛出了约_米(精确到0.1 m) 9 市“健益”超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克由销售经验知,每天销售量(千克)与销售单价(元)()存在如下图所示的一次函数关系式 试求出与的函数关系式; 设“健益”超市销售该绿色食品每天获得利润P元,当销售单价为
11、何值时,每天可获得最大利润?最大利润是多少?根据市场调查,该绿色食品每天可获利润不超过4480元,现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价的范围(直接写出答案)解:设y=kx+b由图象可知,即一次函数表达式为 P有最大值当时,(元)(或通过配方,也可求得最大值)答:当销售单价为35元/千克时,每天可获得最大利润4500元 31x34或36x39利润最大化与二次函数二次函数在市场经济的今天,用途特别广泛。利润最大问题,就是一个典型。下面就举例说明。1、住宿问题某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满当每个房间每天的定
12、价每增加10元时,就会有一个房间空闲对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用设每个房间每天的定价增加元求:(1)房间每天的入住量(间)关于(元)的函数关系式 (2)该宾馆每天的房间收费(元)关于(元)的函数关系式 (3)该宾馆客房部每天的利润(元)关于(元)的函数关系式;当每个房间的定价为每天多少元时,有最大值?最大值是多少?(2008年贵阳市)分析:因为,每个房间每天的定价每增加10元时,就会有一个房间空闲,现在增加x元,折合个10元,所以,有个房间空闲;空房间数+入住房间数=60,这样第一问就解决了;房间收费数额应该等于房间的定价乘以房间的数量,这样第二问的等量关系也找
13、到了;在解答第三问时,关键是理解利润的意义,利润=每天的房间收费数-每个房间每天支出的各种费用。解:(1)房间每天的入住量(间)关于(元)的函数关系式是:y=60-,(2)宾馆每天的房间收费(元)关于(元)的函数关系式是:z=(200+x)(60-),(3)宾馆客房部每天的利润(元)关于(元)的函数关系式是:W=(200+x)(60-)-20(60-),整理,得:W=-+42x+10800=-(x2-420x)+10800= -(x-210)2+15210,因为,a=-0,所以,函数有最大值,并且,当x=210时,函数W有最大值,最大值为15210,当每个房间的定价为每天410元时,有最大值,
14、最大值是15210元。2、投资问题例2、随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高。某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图12-所示;种植花卉的利润与投资量成二次函数关系,如图12-所示(注:利润与投资量的单位:万元)(1)分别求出利润与关于投资量的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?(2008年南宁市)分析:根据图像和题意知道y1是x的正比例函数,并且知道图像上的一个点的坐标为P(1,2),这样就可以求出正比例函数的解析式;仔细观察抛物线的特点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 中考 应用题 大全 15
限制150内