圆的标准方程与一般方程(共12页).doc
《圆的标准方程与一般方程(共12页).doc》由会员分享,可在线阅读,更多相关《圆的标准方程与一般方程(共12页).doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上圆的标准方程1、情境设置:在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?探索研究:2、探索研究:确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。(其中a、b、r都是常数,r0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P=M|MA|=r,由两点间的距离公式让学生写出点M适合的条件化简可得: 引导学生自己证明为圆的方程,得出结论。方
2、程就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。3、知识应用与解题研究例(1):写出圆心为半径长等于5的圆的方程,并判断点是否在这个圆上。分析探求:可以从计算点到圆心的距离入手。探究:点与圆的关系的判断方法:(1),点在圆外(2)=,点在圆上(3),点在圆内例(2):的三个顶点的坐标是求它的外接圆的方程师生共同分析:从圆的标准方程 可知,要确定圆的标准方程,可用待定系数法确定三个参数.(学生自己运算解决)例(3):已知圆心为的圆经过点和,且圆心在上,求圆心为的圆的标准方程.师生共同分析:如图确定一个圆只需确定圆心位置与半径大小.圆心为的圆经过点和,由于圆心与A,B两点的
3、距离相等,所以圆心在险段AB的垂直平分线m上,又圆心在直线上,因此圆心是直线与直线m的交点,半径长等于或。(教师板书解题过程) 总结归纳:(教师启发,学生自己比较、归纳)比较例(2)、例(3)可得出外接圆的标准方程的两种求法:、 根据题设条件,列出关于的方程组,解方程组得到得值,写出圆的标准方程.根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程.课堂练习:课本第1、3、4题4.提炼小结:1、 圆的标准方程。2、 点与圆的位置关系的判断方法。3、 根据已知条件求圆的标准方程的方法。圆的一般方程教学环节教学内容师生互动设计意图课题引入问题:求过三点A (0,0),
4、B (1,1),C (4,2)的圆的方程.利用圆的标准方程解决此问题显然有些麻烦,得用直线的知识解决又有其简单的局限性,那么这个问题有没有其它的解决方法呢?带着这个问题我们来共同研究圆的方程的另一种形式圆的一般方程.让学生带着问题进行思考设疑激趣导入课题.概念形成与深化请同学们写出圆的标准方程:(x a)2 + (y b)2 = r2,圆心(a,b),半径r.把圆的标准方程展开,并整理:x2 + y2 2ax 2by + a2 + b2 r2=0.取D = 2a,E = 2b,F = a2 + b2 r2得x2 + y2 + Dx + Ey+F = 0这个方程是圆的方程.反过来给出一个形如x2
5、 + y2 + Dx + Ey + F = 0的方程,它表示的曲线一定是圆吗?把x2 + y2 + Dx + Ey + F = 0配方得(配方过程由学生去完成)这个方程是不是表示圆?(1)当D2 + E2 4F0时,方程表示以为圆心,为半径的圆;(2)当D2 + E2 4F = 0时,方程只有实数解,即只表示一个点;(3)当D2 + E2 4F0时,方程没有实数解,因而它不表示任何图形.综上所述,方程x2 + y2 + Dx + Ey + F = 0表示的曲线不一定是圆.只有当D2 + E2 4F0时,它表示的曲线才是圆,我们把形如x2 + y2 + Dx + Ey + F = 0的表示圆的方
6、程称为圆的一般方程.整个探索过程由学生完成,教师只做引导,得出圆的一般方程后再启发学生归纳.圆的一般方程的特点:(1)x2和y2的系数相同,不等于0.没有xy这样的二次项.(2)圆的一般方程中有三个特定的系数D、E、F,因此只要求出这三个系数,圆的方程就确定了.(3)与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显.通过学生对圆的一般方程的探究,使学生亲身体会圆的一般方程的特点,及二元二次方程表示圆所满足的条件.应用举例例1 判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径.(1)4x2 + 4y2 4x
7、+ 12y + 9 = 0(2)4x2 + 4y2 4x + 12y + 11 = 0解析:(1)将原方程变为x2 + y2 x + 3y += 0D = 1,E =3,F =.D2 + E2 4F = 10此方程表示圆,圆心(,),半径r =.(2)将原方程化为x2 + y2 x + 3y += 0D = 1,E =3,F =.D2 + E2 4F = 10此方程不表示圆.学生自己分析探求解决途径:用配方法将其变形化成圆的标准形式.运用圆的一般方程的判断方法求解.但是,要注意对于(1)4x2 + 4y2 4x + 12y + 9 = 0来说,这里的D = 1,E = 3,而不是D = 4,E
8、 = 12,F = 9. 通过例题讲解使学生理解圆的一般方程的代数特征及与标准方程的相互转化更进一步培养学生探索发现及分析解决问题的能力.例2 求过三点A (0,0),B (1,1),C (4,2)的圆的方程,并求这个圆的半径长和圆心坐标.分析:据已知条件,很难直接写出圆的标准方程,而圆的一般方程则需确定三个系数,而条件恰给出三点坐标,不妨试着先写出圆的一般方程.解:设所求的圆的方程为:x2 + y2 + Dx + Ey + F = 0A (0,0),B (1,1),C (4,2)在圆上,所以它们的坐标是方程的解.把它们的坐标代入上面的方程,可以得到关于D、E、F的三元一次方程组:即解此方程组
9、,可得:D= 8,E=6,F = 0所求圆的方程为:x2 + y2 8x + 6y = 0;.得圆心坐标为(4,3).或将x2 + y2 8x + 6y = 0左边配方化为圆的标准方程,(x 4)2 + (y + 3)2 = 25,从而求出圆的半径r = 5,圆心坐标为(4,3).例2 讲完后学生讨论交流,归纳得出使用待定系数法的一般步骤:1根据题设,选择标准方程或一般方程.2根据条件列出关于a、b、r或D、E、F的方程组;3解出a、b、r或D、E、F,代入标准方程或一般方程.例3 已知线段AB的端点B的坐标是(4,3),端点A在圆上(x + 1)2 + y2 = 4运动,求线段AB的中点M的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 标准 方程 一般方程 12
限制150内