平面向量知识点整理(共4页).doc
《平面向量知识点整理(共4页).doc》由会员分享,可在线阅读,更多相关《平面向量知识点整理(共4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上平面向量知识点整理1、 概念(1)向量:既有大小,又有方向的量 数量:只有大小,没有方向的量有向线段的三要素:起点、方向、长度 (2)单位向量:长度等于个单位的向量(3)平行向量(共线向量):方向相同或相反的非零向量零向量与任一向量平行提醒:相等向量一定是共线向量,但共线向量不一定相等;两个向量平行与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;平行向量无传递性!(因为有零向量)三点A、B、C共线 共线uuuruuur(4)相等向量:长度相等且方向相同的向量(5)相反向量:长度相等方向相反的向量。a 的相反向量是-a(6
2、)向量表示:几何表示法;字母a表示;坐标表示:aj(,).(7)向量的模:设,则有向线段的长度叫做向量的长度或模,记作:. ( 。)(8)零向量:长度为的向量。aOaO.【例题】1.下列命题:(1)若,则。(2)两个向量相等的充要条件是它们的起点相同,终点相同。(3)若,则是平行四边形。(4)若是平行四边形,则。(5)若,则。(6)若,则。其中正确的是_(答:(4)(5)2.已知均为单位向量,它们的夹角为,那么_(答:); 2、向量加法运算:三角形法则的特点:首尾相连 平行四边形法则的特点:共起点三角形不等式:运算性质:交换律:;结合律:; 坐标运算:设,则3、向量减法运算:三角形法则的特点:
3、共起点,连终点,方向指向被减向量坐标运算:设,则设、两点的坐标分别为,则【例题】(1)_;_; _ (答:;);(2)若正方形的边长为1,则_(答:);(3)已知作用在点的三个力,则合力的终点坐标是 (答:(9,1)4、向量数乘运算:实数与向量的积是一个向量的运算叫做向量的数乘,记作;当时,的方向与的方向相同; 当时,的方向与的方向相反;当时,运算律:;坐标运算:设,则5、向量共线定理:向量与共线,当且仅当有唯一一个实数,使设,()。 6、向量垂直:.7、平面向量的数量积:零向量与任一向量的数量积为性质:设和都是非零向量,则当与同向时,;当与反向时,;或运算律:;坐标运算:设两个非零向量,则若,则,或设,则abab0x1x2y1y20. 则abab(b0)x1y2 x2y1.设、都是非零向量,是与的夹角,则;(注)专心-专注-专业
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 向量 知识点 整理
限制150内