高考数学复习点拨:几类常见排列组合问题解题策略(共4页).doc
《高考数学复习点拨:几类常见排列组合问题解题策略(共4页).doc》由会员分享,可在线阅读,更多相关《高考数学复习点拨:几类常见排列组合问题解题策略(共4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上几类常见排列组合问题解题策略江苏 张圣官 排列组合问题是高中数学中的一个难点,也是高考的必考内容。其思考方法独特,解题思路新颖。如果对题意认识出现偏差的话,极易出现计数中的“重复”和“遗漏”。在初学阶段,提高学生解排列组合题的有效途径之一是将一些常见题型进行方法归类,构造模型解题。这样有利于学生认别模式,并进而熟练运用。本文列举了八种常见的排列组合典型问题的解题策略,希望能对大家有所帮助。1 重复排列“住店法” 重复排列问题要区分两类元素:一类可以重复,另一类不能重复。把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题。例1 8名同学争夺3
2、项冠军,获得冠军的可能性有 ( ) A B C D 解析 冠军不能重复,但同一个学生可获得多项冠军。把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可住进任意一家“店”,每个客有8种可能,因此共有种不同的结果。选(A)。 评述类似问题较多。如:将8封信放入3个邮筒中,有多少种不同的结果?这时8封信是“客”,3个邮筒是“店”,故共有种结果。要注意这两个问题的区别。2 特色元素“优先法”某个(或几个)元素要排在指定位置,可优先将它(们)安排好,后再安排其它元素。 例2乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四
3、位置,那么不同的出场安排共有_种(用数字作答)。解析3名主力的位置确定在一、三、五位中选择,将他们优先安排,有种可能;然后从其余7名队员选2名安排在第二、四位置,有种排法。因此结果为=252种。例3 5个“1”与2个“2”可以组成多少个不同的数列?解析按一定次序排列的一列数叫做数列。由于7个位置不同,故只要优先选两个位置安排好“2”,剩下的位置填“1”(也可先填“1”再填“2”)。因此,一共可以组成=21个不同的数列。3 相邻问题“捆绑法” 把相邻的若干特殊元素“捆绑”为一个“大元素”,与其余普通元素全排列,是为“捆绑法”,又称为“大元素法”。不过要注意“大元素”内部还需要进行排列。 例4有8
4、本不同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有_种(结果用数字表示)。解析将数学书与外文书分别捆在一起与其它3本书一起排,有种排法,再将3本数学书之间交换有种,2本外文书之间交换有种,故共有=1440种排法。 评述这里需要说明的是,有一类问题是两个已知元素之间有固定间隔时,也用“捆绑法”解决。如:7个人排成一排,要求其中甲乙两人之间有且只有一人,问有多少种不同的排法?可将甲乙两人和中间所插一人“捆绑”在一起做“大元素”,但甲乙两人位置可对调,而且中间一人可从其余5人中任取,故共有种排法。4 相间问题“插空法
5、” 元素不相邻问题,先安排好其他元素,然后将不相邻的元素按要求插入排好的元素之间的空位和两端即可。例5 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目。如果将这两个节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 ( )A 6 B 12 C 15 D 30解析原来的5个节目中间和两端可看作分出6个空位。将两个新节目不相邻插入,相当于从6个位置中选2个让它们按顺序排列,故有种排法,选(D)。评述本题中的原有5个节目不需要再排列,这一点要注意。请练习以下这道题:马路上有编号为1、2、3、10的十盏路灯,为节约用电又能照明,现准备把其中的三盏灯,但不能关掉相邻的两盏或
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 复习 点拨 常见 排列组合 问题 解题 策略
限制150内