函数单调性奇偶性经典练习.docx
《函数单调性奇偶性经典练习.docx》由会员分享,可在线阅读,更多相关《函数单调性奇偶性经典练习.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上函数单调性奇偶性经典练习一、单调性题型高考中函数单调性在高中函数知识模块里面主要作为工具或条件使用,也有很多题会以判断单调性单独出题或有的题会要求先判断函数单调性才能进行下一步骤解答,另有部分以函数单调性质的运用为主.(一)函数单调性的判断函数单调性判断常用方法:例1 证明函数在区间上为减函数(定义法)解析:用定义法证明函数的单调性,按步骤“一假设、二作差、三判断(与零比较)”进行. 解:设且, , 故函数在区间上为减函数.练习1 证明函数在区间上为减函数(定义法)练习2 证明函数在区间上为增函数(定义法、快速判断法)练习3 求函数定义域,并求函数的单调增区间(定义法
2、)练习4 求函数定义域,并求函数的单调减区间(定义法)(二) 函数单调性的应用例1 若函数是定义在上的增函数,且恒成立,求实数的范围。练习1 若函数是定义在上的增函数,且恒成立,求实数的范围练习2 若函数是定义在上的增函数,且恒成立,求实数的范围例2 若函数是定义在上的减函数,且恒成立,求实数的取值范围.练1 若函数是定义在上的减函数,且恒成立,求实数的取值范围.例3 求函数在区间上的最大值.练习1 求函数在区间上的最大值二 、奇偶性题型例1 判断下列函数的奇偶性1) 2)3) 4)解:1)的定义域为R,所以原函数为偶函数。2) 的定义域为即,关于原点对称,又即 ,所以原函数既是奇函数又是偶函
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 调性 奇偶性 经典 练习
限制150内