《几何概型(第一课时)》的教学设计(共6页).doc
《《几何概型(第一课时)》的教学设计(共6页).doc》由会员分享,可在线阅读,更多相关《《几何概型(第一课时)》的教学设计(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上几何概型(第一课时)教学设计黔西一中 施启军 教材分析:本节课选自普通高中课程标准实验教科书数学(人教A版)必修3第3章概率第3节内容,几何概型第一课时,几何概型的学习是在古典概型之后学习,是对古典概型内容的进一步拓展,是等可能事件的概念从有限向无限的延伸。在现实生活中,常常会遇到很多游戏的所有可能结果有无穷多的情况,这时我们就可以用几何概型来计算事件发生的概率,这充分体现了数学源于生活,数学与生活的紧密联系,同时也说明数学在概率论中有重要作用。概率在选修模块的系列2中还将继续学习概率的其他内容,因此,本章在高中阶段概率的学习中,起了承前启后的作用.本节的核心素养是从
2、生活中的转盘游戏抽象、建模转化为数学问题,运用数学方法去研究不确定现象的规律,让学生初步形成从直观想象到建模的逻辑思维的思想、随机的观念去观察、分析研究客观世界的态度,并获取认识世界的初步知识.学情分析:本小节是在学生已经掌握一般性的随机事件即概率的统计定义的基础上,继古典概型后对另一常见概型的学习,让学生通过观察、推断、归纳过度到几何概型的概念,有效提高学生直觉思维能力,对学生辩证思想的进一步形成具有促进的作用.三维目标:知识与技能:了解几何概型的意义,会用几何概型的概率计算公式求简单的几何概型事件的概率.过程与方法:通过学习几何概型的过程,初步体会几何概型的含义,从有限到无限的推广,体验几
3、何概型与古典概型的区别与联系.情感、态度与价值观:通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流、独立思考的习惯.教学重点:几何概型的基本特点及几何概型的概率公式及运用.教学难点:从实际背景中观察、推断、归纳出几何概型概率公式.课时安排 1课时教学过程一、创设情境,导入新课问题情境一:拿出制作好的转盘,让学生亲自体验转盘游戏,体验游戏中中奖的可能性的大小及游戏的公平性。(设计意图:让学生亲自体验游戏并给适当的奖品,激发学生的学习兴趣和强烈的求知欲望,自然地进入本节课的主题“几何概型”)上述试验的可能结果个数有多少个? 它是古典概型吗?有无数多个结果,不是古典概型。在现
4、实生活中,常常会遇到试验的所有可能结果是无穷多的情况,这时就不能用古典概型来计算事件发生的概率.我们必须学习新的方法来解决这类问题.为此,我们今天学习几何概型探究 几何概型的概念1.图中有两个转盘.甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?以转盘(1)为游戏工具时,甲获胜的概率为以转盘(2)为游戏工具时,甲获胜的概率为事实上,甲获胜的概率与字母B所在扇形区域的圆弧的长度(面积或圆心角的大小)有关,而与字母B所在区域的位置无关.因为转转盘时,指针指向圆弧上哪一点都是等可能的.不管这些区域是相邻,还是不相邻,甲获胜的概率是不变的(设计意图
5、:这个问题都来自于日常生活中,学生们会跃跃欲试,情境具有暗示作用,在暗示作用下,学生不知不觉地参与了情境中的角色,这样他们的学习积极性和思维活动就会被极大的调动起来.)二、师生互动,意义建构经过分析,在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”,但是显然不能用古典概型的方法求解.教师提问:由以上的问题,你觉得此类问题与古典概型相比有何特点?如何求此类问题的概率?(设计意图:让学生讨论,教师适当点拨.由学生总结几何概型的概念、基本特点、概率计算公式,之后要加以说明,以便学生理解与记忆.帮助学生弄清其形式和本质,明确其内涵和外延.)几何概型概念:如果每个事件发生的概率只与构
6、成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.几何概型的特点:(1)试验中所有可能出现的结果(基本事件)有无限多个;(提醒学生与古典概型的区别)(2)每个基本事件出现的可能性相等.(与古典概型的联系)对于一个随机试验,如果我们将每个基本事件理解为从某个特定的几何区域内随机地抽取一点,而该区域内每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域内的点.这样就可以把随机事件与几何区域联系在一起.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.探究:几何概型的概率计算公式1.与长度有关的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 几何概型第一课时 几何 第一 课时 教学 设计
限制150内