初三经典几何证明练习题.docx
《初三经典几何证明练习题.docx》由会员分享,可在线阅读,更多相关《初三经典几何证明练习题.docx(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上初三几何证明题经典题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CDAB,EFAB,EGCO求证:CDGF2、已知:如图,P是正方形ABCD内部的一点,PADPDA15。求证:PBC是正三角形(初二)3、已知:如图,在四边形ABCD中,ADBC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F求证:DENF经典题(二)1、已知:ABC中,H为垂心(各边高线的交点),O为外心,且OMBC于M(1)求证:AH2OM;(2)若BAC600,求证:AHAO2、设MN是圆O外一条直线,过O作OAMN于A,自A引圆的两条割线交圆O于B、C及D、E,连接
2、CD并延长交MN于Q,连接EB并延长交MN于P.求证:APAQ3、如图,分别以ABC的AB和AC为一边,在ABC的外侧作正方形ABFG和正方形ACDE,点O是DF的中点,OPBC求证:BC=2OP证明:分别过F、A、D作直线BC的垂线,垂足分别是L、M、NOF=OD,DNOPFLPN=PLOP是梯形DFLN的中位线DN+FL=2OPABFG是正方形ABM+FBL=90又BFL+FBL=90ABM=BFL又FLB=BMA=90,BF=ABBFLABMFL=BM同理AMCCNDCM=DNBM+CN=FL+DNBC=FL+DN=2OP经典题(三)1、如图,四边形ABCD为正方形,DEAC,AEAC,
3、AE与CD相交于F求证:CECF证明:连接BD交AC于O。过点E作EGAC于GABCD是正方形BDAC又EGACBDEG又DEACODEG是平行四边形又COD=90ODEG是矩形EG=OD=BD=AC=AEEAG=30AC=AEACE=AEC=75又AFD=90-15=75CFE=AFD=75=AECCE=CF2、如图,四边形ABCD为正方形,DEAC,且CECA,直线EC交DA延长线于F求证:AEAF证明:连接BD,过点E作EGAC于GABCD是正方形BDAC,又EGACCAE=CEA=GCE=15在AFC中F =180-FAC-ACF =180-FAC-GCE=180-135-30=15F
4、=CEAAE=AFBDEG又DEACODEG是平行四边形又COD=90ODEG是矩形EG =OD =BD=AC=CEGCE=30AC=EC3、设P是正方形ABCD一边BC上的任一点,PFAP,CF平分DCE求证:PAPF(初二)证明:过点F作FGCE于G,FHCD于HCDCGHCGF是矩形HCF=GCFFH=FGHCGF是正方形设AB=x,BP=y,CG=zz:y=(x-y+z):x化简得(x-y)y=(x-y)zx-y0y=z即BP=FGABPPGFCG=GFAPFPAPB+FPG=90APB+BAP=90FPG=BAP又FGP=PBAFGPPBAFG:PB=PG:AB4、如图,PC切圆O于
5、C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D求证:ABDC,BCAD(初三)证明:过点E作EKBD,分别交AC、AF于M、K,取EF的中点H,连接OH、MH、ECEH=FHEM=KMEKBDOB=OD又AO=CO四边形ABCD的对角线互相平分ABCD是平行四边形AB=DC,BC=ADOHEF,PHO=90又PCOC,POC=90P、C、H、O四点共圆HCO=HPO又EKBD,HPO=HEKHCM=HEMH、C、E、M四点共圆ECM=EHM又ECM=EFAEHM=EFAHMACEH=FH经典题(四)1、已知:ABC是正三角形,P是三角形内一点,PA3,PB4,PC5求A
6、PB的度数(初二)解:将ABP绕点B顺时针方向旋转60得BCQ,连接PQ则BPQ是正三角形BQP=60,PQ=PB=3在PQC中,PQ=4,CQ=AP=3,PC=5PQC是直角三角形PQC=90BQC=BQP+PQC=60+90=150APB=BQC=1502、设P是平行四边形ABCD内部的一点,且PBAPDA求证:PABPCB(初二)证明:过点P作AD的平行线,过点A作PD的平行线,两平行线相交于点E,连接BEPEAD,AEPDADPE是平行四边形PE=AD,又ABCD是平行四边形AD=BCPE=BC又ADP=ABPAEP=ABPA、E、B、P四点共圆BEP=PABPAB=PCB又PEAD,
7、ADBCPEBCBCPE是平行四边形BEP=PCBADPE是平行四边形ADP=AEP3、设ABCD为圆内接凸四边形,求证:ABCDADBCACBD(初三)证明:在BD上去一点E,使BCE=ACD=CAD=CBDBECADCADBC=BEACBCE=ACDBCE+ACE=ACD+ACE即BCA=ECD+得ABCD+ADBC =DEAC+BEAC =(DE+BE)AC =BDAC=,BAC=BDCBACEDCABCD=DEAC4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AECF求证:DPADPC(初二)证明:过点D作DGAE于G,作DHFC于H,连接DF、DE
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初三 经典 几何 证明 练习题
限制150内