初中数学八年级上《整式的乘法及因式分解》知识点及经典题型.docx
《初中数学八年级上《整式的乘法及因式分解》知识点及经典题型.docx》由会员分享,可在线阅读,更多相关《初中数学八年级上《整式的乘法及因式分解》知识点及经典题型.docx(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上整式的乘法及因式分解知识点1幂的运算性质:amanamn (m、n为正整数)同底数幂相乘,底数不变,指数相加例:(2a)2(3a2)32 amn (m、n为正整数)幂的乘方,底数不变,指数相乘例: (a5)53 (n为正整数)积的乘方等于各因式乘方的积4 amn (a0,m、n都是正整数,且mn)同底数幂相除,底数不变,指数相减5零指数幂的概念:a01 (a0)任何一个不等于零的数的零指数幂都等于l6负指数幂的概念:ap (a0,p是正整数)任何一个不等于零的数的p(p是正整数)指数幂,等于这个数的p指数幂的倒数也可表示为:(m0,n0,p为正整数)7单项式的乘法法则
2、:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式8单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加9多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加10、因式分解中常用的公式,例如:(1)(a+b)(a-b) = a2-b2 -a2-b2=(a+b)(a-b);(2) (ab)2 = a22ab+b2 a22ab+b2=(ab)2;(3) (a+b)(a2-ab+b2) =a3+b3- a3+b3=(a+b)(a2-
3、ab+b2);(4) (a-b)(a2+ab+b2) = a3-b3 -a3-b3=(a-b)(a2+ab+b2)下面再补充两个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);11、凡是能用十字相乘法分解因式的二次三项式ax2+bx+c,都要求 0而且是一个完全平方数。(a、b、c是常数)整式的乘法及因式分解相关题型:一、 有关幂的典型题型:公式的直接应用:(1) (2)1、若n为正整数,且x 2n3,则(3x 3n) 2的值为2、如果(a nbab m) 3a 9b 15,那
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 整式的乘法及因式分解 初中 数学 年级 整式 乘法 因式分解 知识点 经典 题型
限制150内