《锐角三角函数》导学案(共9课时)(共14页).doc
《《锐角三角函数》导学案(共9课时)(共14页).doc》由会员分享,可在线阅读,更多相关《《锐角三角函数》导学案(共9课时)(共14页).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上锐角三角函数全章导学案襄阳南漳李庙中学 熊越红281锐角三角函数(1)【学习目标】 经历当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。 能根据正弦概念正确进行计算【学习重点】 理解正弦(sinA)概念,知道当直角三角形的锐角固定时,它的对边与斜边的比值是固 定值这一事实【学习难点】 当直角三角形的锐角固定时,它的对边与斜边的比值是固定值的事实。【导学过程】一、自学提示1、如图在RtABC中,C=90,A=30,BC=10m,求AB2、如图在RtABC中,C=90,A=30,AB=20m,求BC二、合作交流问题: 为了绿化荒山,某地打算从
2、位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌现测得斜坡与水平面所成角的度数是30,为使出水口的高度为35m,那么需要准备多长的水管?思考1:如果使出水口的高度为50m,那么需要准备多长的水管? ; 如果使出水口的高度为a m,那么需要准备多长的水管? ;结论:直角三角形中,30角的对边与斜边的比值 思考2:在RtABC中,C=90,A=45,A对边与斜边的比值是一个定值吗?如果是,是多少?结论:直角三角形中,45角的对边与斜边的比值 三、教师助学从上面这两个问题的结论中可知,在一个RtABC中,C=90,当A=30时,A的对边与斜边的比都等于,是一个固定值;
3、当A=45时,A的对边与斜边的比都等于,也是一个固定值这就引发我们产生这样一个疑问:当A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?探究:任意画RtABC和RtABC,使得C=C=90,A=A=a,那么有什么关系你能解释一下吗? 结论:这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,A的对边与斜边的比 正弦函数概念:规定:在RtBC中,C=90,A的对边记作a,B的对边记作b,C的对边记作c在RtBC中,C=90,我们把锐角A的对边与斜边的比叫做A的正弦,记作sinA,即sinA= = sinA例如,当A=30时,我们有sinA=sin30= ;当A=4
4、5时,我们有sinA=sin45= 四、自我展示例1 如图,在RtABC中,C=90,求sinA和sinB的值五、随堂检测:1三角形在正方形网格纸中的位置如图所示,则sin的值是 A B C D2如图,在直角ABC中,C90o,若AB5,AC4,则sinA( )A B C D3 在ABC中,C=90,BC=2,sinA=,则边AC的长是( )A B3 C D 4如图,已知点P的坐标是(a,b),则sin等于( )A B C六、课堂小结:在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,A的对边与斜边的比都是 在RtABC中,C=90,我们把锐角A的对边与斜边的比叫做A的 ,记作 。七
5、、自我反思:本节课我的收获: 。281锐角三角函数(2)【学习目标】感知当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实。逐步培养观察、比较、分析、概括的思维能力。【学习重点】理解余弦、正切的概念。【学习难点】熟练运用锐角三角函数的概念进行有关计算。【导学过程】一、自学提示1、我们是怎样定义直角三角形中一个锐角的正弦的?EOABCD2、如图,在RtABC中,ACB90,CDAB于点D。已知AC=,BC=2,那么sinACD( )ABCD3、如图,已知AB是O的直径,点C、D在O上,且AB5,BC3则sinBAC= ;sinADC= 4、在RtABC中,C=90,当锐角
6、A确定时,A的对边与斜边的比是 ,现在我们要问:A的邻边与斜边的比呢? A的对边与邻边的比呢?为什么?二、合作交流:探究:一般地,当A取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?如图:RtABC与RtABC,C=C =90o,B=B=,那么与有什么关系?三、教师助学类似于正弦的情况,如图在RtBC中,C=90,当锐角A的大小确定时,A的邻边与斜边的比、A的对边与邻边的比也分别是确定的我们把A的邻边与斜边的比叫做A的余弦,记作cosA,即cosA=;把A的对边与邻边的比叫做A的正切,记作tanA,即tanA=例如,当A=30时,我们有cosA=cos30= ;当A=45时,我们
7、有tanA=tan45= 归纳:锐角A的正弦、余弦、正切都叫做A的锐角三角函数对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是A的函数同样地,cosA,tanA也是A的函数例2:如图,在RtABC中,C=90,BC=6,sinA=,求cosA、tanB的值四、自我展示1.在中,C90,a,b,c分别是A、B、C的对边,则有() ABCD 本题主要考查锐解三角函数的定义,同学们只要依据的图形,不难写出,从而可判断C正确.2. 在中,C90,如果cos A=那么的值为() ABCD分析? 本题主要考查锐解三角函数及三角变换知识。其思路是:依据条件,可求出;再由,可求出,从
8、而,故应选D.3、如图:P是的边OA上一点,且P点的坐标为(3,4), 则cos_. 五、课堂小结:在RtBC中,C=90,我们把锐角A的对边与斜边的比叫做A的正弦,记作sinA,即sinA= = sinA把A的邻边与斜边的比叫做A的余弦,记作 ,即 把A的对边与邻边的比叫做A的正切,记作 ,即 七、自我反思:本节课我的收获: 。282解直角三角形(1)【学习目标】使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力渗透数形结合的数学
9、思想,培养学生良好的学习习惯【学习重点】直角三角形的解法【学习难点】三角函数在解直角三角形中的灵活运用【导学过程】一、自学提示1在三角形中共有几个元素? 2直角三角形ABC中,C=90,a、b、c、A、B这五个元素间有哪些等量关系呢?(1)边角之间关系如果用表示直角三角形的一个锐角,那上述式子就可以写成.(2)三边之间关系 (3)锐角之间关系A+B=90a2 +b2 =c2 (勾股定理) 以上三点正是解直角三角形的依据二、合作交流要想使人安全地攀上斜靠在墙面上的梯子的顶端.梯子与地面所成的角一般要满足, (如图).现有一个长6m的梯子,问:(1)使用这个梯子最高可以安全攀上多高的墙(精确到0.
10、 1 m)(2)当梯子底端距离墙面2.4 m时,梯子与地面所成的角等于多少(精确到1o)这时人是否能够安全使用这个梯子三、教师助学例1在ABC中,C为直角,A、B、C所对的边分别为a、b、c,且b=,a=,解这个三角形例2在RtABC中, B =35o,b=20,解这个三角形四、自我展示1根据直角三角形的_元素(至少有一个边),求出_其它所有元素的过程,即解直角三角形2、在RtABC中,a=104.0,b=20.49,解这个三角形3、在ABC中,C为直角,AC=6,的平分线AD=4,解此直角三角形。 4、RtABC中,若sinA=,AB=10,那么BC=_,tanB=_5、在ABC中,C=90
11、,AC=6,BC=8,那么sinA=_6、在ABC中,C=90,sinA=,则cosA的值是( ) A B C五、课堂小结:小结“已知一边一角,如何解直角三角形?”七、自我反思:本节课我的收获: 。282解直角三角形(2)【学习目标】使学生了解仰角、俯角的概念,使学生根据直角三角形的知识解决实际问题逐步培养学生分析问题、解决问题的能力渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识【学习重点】将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决【学习难点】实际问题转化成数学模型【导学过程】一、自学提示1解直角三角形指什么?2解直角三角形主要
12、依据什么?(1)勾股定理: (2)锐角之间的关系: (3)边角之间的关系: tanA= 二、合作交流仰角、俯角当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角三、教师助学例3 2003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变轨后,就在离地球表面350km的圆形轨道上运行.如图,当飞船运行到地球表面上P点的正上方时,从飞船上最远能直接看到的地球上的点在什么位置?这样的最远点与P点的距离是多少?(地球半径约为6 400 km,结果精确到0. 1 km)例4热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30o,看这栋离楼底部的
13、俯角为60o,热气球与高楼的水平距离为120 m.这栋高楼有多高(结果精确到0.1m)?四、自我展示一、课本93页 练习 第1 、2题五、课堂小结:六、作业设置:课本 第96页 习题282复习巩固第3、4题七、自我反思:本节课我的收获: 。282解直角三角形(3)【学习目标】使学生了解方位角的命名特点,能准确把握所指的方位角是指哪一个角逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法巩固用三角函数有关知识解决问题,学会解决方位角问题【学习重点】用三角函数有关知识解决方位角问题【学习难点】学会准确分析问题并将实际问题转化成数学模型【导学过程】一、自学提示坡度与坡角 坡面的铅直高
14、度h和水平宽度的比叫做坡度(或叫做坡比),一般用i表示。即,常写成i=1:m的形式如i=1:2.5把坡面与水平面的夹角叫做坡角结合图形思考,坡度i与坡角之间具有什么关系? 这一关系在实际问题中经常用到。二、教师助学例5如图,一艘海轮位于灯塔P的北偏东65方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34方向上的B处.这时,海轮所在的B处距离灯塔P有多远?例6同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图6-33水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=13,斜坡CD的坡度i=12.5,求斜坡AB的坡面角,坝底宽A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 锐角三角函数 锐角三角 函数 导学案 课时 14
限制150内