高中数学概念、方法、题型、易误点及应试技巧总结(九)直线、平面、简单多面体(共10页).doc
《高中数学概念、方法、题型、易误点及应试技巧总结(九)直线、平面、简单多面体(共10页).doc》由会员分享,可在线阅读,更多相关《高中数学概念、方法、题型、易误点及应试技巧总结(九)直线、平面、简单多面体(共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上九、直线、平面、简单多面体1、三个公理和三条推论:(1)公理1:一条直线的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。这是判断直线在平面内的常用方法。(2)公理2、如果两个平面有两个公共点,它们有无数个公共点,而且这无数个公共点都在同一条直线上。这是判断几点共线(证这几点是两个平面的公共点)和三条直线共点(证其中两条直线的交点在第三条直线上)的方法之一。(3)公理3:经过不在同一直线上的三点有且只有一个平面。推论1:经过直线和直线外一点有且只有一个平面。推论2:经过两条相交直线有且只有一个平面。推论3:经过两条平行直线有且只有一个平面。公理3和三个推论是
2、确定平面的依据。如(1)在空间四点中,三点共线是四点共面的_条件(答:充分非必要);(2)给出命题:若Al,A,Bl ,B,则 l ;若A,A,B,B,则AB;若l,Al,则A若A、B、C,A、B、C,且A、B、C不共线,则与重合。上述命题中,真命题是_(答:);(3)长方体中ABCD-A1B1C1D1中,AB=8,BC=6,在线段BD,A1C1上各有一点P、Q,在PQ上有一点M,且PM=MQ,则M点的轨迹图形的面积为_(答:24)2、直观图的画法(斜二侧画法规则):在画直观图时,要注意:(1)使,所确定的平面表示水平平面。(2)已知图形中平行于轴和轴的线段,在直观图中保持长度和平行性不变,平
3、行于轴的线段平行性不变,但在直观图中其长度为原来的一半。如(1)用斜二测画法画一个水平放置的平面图形为如下图的一个正方形,则原来图形的形状是()(答:A)(2)已知正的边长为,那么的平面直观图的面积为_(答:)3、空间直线的位置关系:(1)相交直线有且只有一个公共点。(2)平行直线在同一平面内,没有公共点。(3)异面直线不在同一平面内,也没有公共点。如(1)空间四边形ABCD中,E、F、G、H分别是四边上的中点,则直线EG和FH的位置关系_(答:相交);(2)给出下列四个命题:异面直线是指空间既不平行又不相交的直线;两异面直线,如果平行于平面,那么不平行平面;两异面直线,如果平面,那么不垂直于
4、平面;两异面直线在同一平面内的射影不可能是两条平行直线 。其中正确的命题是_(答:)4、异面直线的判定:反证法。 如(1)“、为异面直线”是指:,但不平行于;面,面且ab;面,面且;面,b面;不存在平面,能使面且面成立。上述结论中,正确的是_(答:);(2)在空间四边形ABCD中,M、N分别是AB、CD的中点,设BC+AD=2a,则MN与a的大小关系是_(答:MNa);(3)若E、F、G、H顺次为空间四边形ABCD四条边AB、BC、CD、DA的中点,且EG=3,FH=4,则AC2+BD2= _(答:50);(4)如果、是异面直线,P是不在、上的任意一点,下列四个结论:过点P一定可以作直线与、都
5、相交;过点P一定可以作直线与、都垂直;过点P一定可以作平面与、都平行;过点P一定可以作直线与、都平行。其中正确的结论是_(答:);(5)如果两条异面直线称作一对,那么正方体的十二条棱中异面直线的对数为_(答:24);(6)已知平面求证:b、c是异面直线5、异面直线所成角的求法:(1)范围:;(2)求法:计算异面直线所成角的关键是平移(中点平移,顶点平移以及补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,以便易于发现两条异面直线间的关系)转化为相交两直线的夹角。如(1)正四棱锥的所有棱长相等,是的中点,那么异面直线与所成的角的余弦值等于_(答:);(2)在正方体AC1
6、中,M是侧棱DD1的中点,O是底面ABCD的中心,P是棱A1B1上的一点,则OP与AM所成的角的大小为_(答:90);(3)已知异面直线a、b所成的角为50,P为空间一点,则过P且与a、b所成的角都是30的直线有且仅有_条(答:2);(4)若异面直线所成的角为,且直线,则异面直线所成角的范围是_(答:);6、异面直线的距离的概念:和两条异面直线都垂直相交的直线叫异面直线的公垂线。两条异面直线的公垂线有且只有一条。而和两条异面直线都垂直的直线有无数条,因为空间中,垂直不一定相交。如(1)ABCD是矩形,沿对角线AC把ADC折起,使ADBC,求证:BD是异面直线AD与BC的公垂线;(2)如图,在正
7、方体ABCDA1B1C1D1中,EF是异面直线AC与A1D的公垂线,则由正方体的八个顶点所连接的直线中,与EF平行的直线有_条(答:1);7、两直线平行的判定:(1)公理4:平行于同一直线的两直线互相平行;(2)线面平行的性质:如果一条直线和一个平面平行,那么经过这条直线的平面和这个平面相交的交线和这条直线平行;(3)面面平行的性质:如果两个平行平面同时与第三个平面相交,那么它们的交线平行;(4)线面垂直的性质:如果两条直线都垂直于同一个平面,那么这两条直线平行。8、两直线垂直的判定:(1)转化为证线面垂直;(2)三垂线定理及逆定理。9、直线与平面的位置关系:(1)直线在平面内;(2)直线与平
8、面相交。其中,如果一条直线和平面内任何一条直线都垂直,那么这条直线和这个平面垂直。注意:任一条直线并不等同于无数条直线;(3)直线与平面平行。其中直线与平面相交、直线与平面平行都叫作直线在平面外。如(1)下列命题中,正确的是 、若直线平行于平面内的一条直线b , 则 / 、若直线垂直于平面的斜线b在平面内的射影,则b、若直线垂直于平面,直线b是平面的斜线,则与b是异面直线、若一个棱锥的所有侧棱与底面所成的角都相等,且所有侧面与底面所成的角也相等,则它一定是正棱锥(答:D);(2)正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且总保持APBD1,则动点P的轨迹是_(
9、答:线段B1C)。10、直线与平面平行的判定和性质:(1)判定:判定定理:如果平面内一条直线和这个平面平面平行,那么这条直线和这个平面平行;面面平行的性质:若两个平面平行,则其中一个平面内的任何直线与另一个平面平行。(2)性质:如果一条直线和一个平面平行,那么经过这条直线的平面和这个平面相交的交线和这条直线平行。在遇到线面平行时,常需作出过已知直线且与已知平面相交的辅助平面,以便运用线面平行的性质。如(1)、表示平面,a、b表示直线,则a的一个充分不必要条件是A、,aB、b,且abC、ab且bD、且a(答:D);(2)正方体ABCD-ABCD中,点N在BD上,点M在B1C上,且CM=DN,求证
10、:MN面AA1B1B。11、直线和平面垂直的判定和性质:(1)判定:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线和这个平面垂直。两条平行线中有一条直线和一个平面垂直,那么另一条直线也和这个平面垂直。(2)性质:如果一条直线和一个平面垂直,那么这条直线和这个平面内所有直线都垂直。如果两条直线都垂直于同一个平面,那么这两条直线平行。如(1)如果命题“若z,则”不成立,那么字母x、y、z在空间所表示的几何图形一定是_(答:x、y是直线,z是平面);(2)已知a,b,c是直线,、是平面,下列条件中能得出直线a平面的是 A、ab,其中,B、ab ,C、, D、,(答:D);(3)AB为O的
11、直径,C为O上的一点,AD面ABC,AEBD于E,AFCD于F,求证:BD平面AEF。12、三垂线定理及逆定理:(1)定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。(2)逆定理:在平面内的一条直线,如果它和这个平面的一条斜线,那么它也和这条斜线在平面内的射影垂直。其作用是证两直线异面垂直和作二面角的平面角。13、直线和平面所成的角:(1)定义:平面的一条斜线和它在平面内的射影所成的锐角,叫这条直线和这个平面所成的角。(2)范围:;(3)求法:作出直线在平面上的射影;(4)斜线与平面所成的角的特征:斜线与平面中所有直线所成角中最小的角。如(1)在正三棱柱
12、ABC-A1B1C1中,已知AB=1,D在棱BB1上,BD=1,则AD与平面AA1C1C所成的角为_(答:arcsin);(2)正方体ABCD-A1B1C1D1中,E、F分别是AB、C1D1的中点,则棱 A1B1 与截面A1ECF所成的角的余弦值是_(答:);(3)是从点引出的三条射线,每两条的夹角都是,则直线与平面所成角的余弦值为_(答:);(4)若一平面与正方体的十二条棱所在直线都成相等的角,则sin的值为_(答:)。14、平面与平面的位置关系:(1)平行没有公共点;(2)相交有一条公共直线。15、两个平面平行的判定和性质:(1)判定:一个如果平面内有两条相交直线和另一个平面平行,则这两个
13、平面平行。(2)性质:如果两个平行平面同时与第三个平面相交,那么它们的交线平行。如(1)是两个不重合的平面,在下列条件中,不能判定平面的条件是A、是内一个三角形的两条边,且B、内有不共线的三点到的距离都相等C、都垂直于同一条直线D、是两条异面直线,且(答:B);(2)给出以下六个命题:垂直于同一直线的两个平面平行;平行于同一直线的两个平面平行;平行于同一平面的两个平面平行;与同一直线成等角的两个平面平行;一个平面内的两条相交直线于另一个平面内的两条相交直线平行,则这两个平面平行;两个平面分别与第三个平面相交所得的两条交线平行,则这两个平面平行。其中正确的序号是_(答:);(3)正方体ABCD-
14、ABCD中AB=。求证:平面AD1B1平面C1DB;求证:A1C平面AD1B1 ;求平面AD1B1与平面C1DB间的距离(答:);16、二面角:(1)平面角的三要素:顶点在棱上;角的两边分别在两个半平面内;角的两边与棱都垂直。(2)作平面角的主要方法:定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;三垂线法:过其中一个面内一点作另一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;垂面法:过一点作棱的垂面,则垂面与两个半平面的交线所成的角即为平面角;(3)二面角的范围:;(4)二面角的求法:转化为求平面角;面积射影法:利
15、用面积射影公式,其中为平面角的大小。对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法(尤其可考虑面积射影法)。如(1)正方形ABCD-A1B1C1D1中,二面角B-A1C-A的大小为_(答:);(2)将A为60的棱形ABCD沿对角线BD折叠,使A、C的距离等于BD,则二面角A-BD-C的余弦值是_(答:);(3)正四棱柱ABCDA1B1C1D1中对角线BD18,BD1与侧面B1BCC1所成的为30,则二面角C1BD1B1的大小为_(答:);(4)从点P出发引三条射线PA、PB、PC,每两条的夹角都是60,则二面角B-PA-C的余弦值是_(答:);(5)二面角-
16、的平面角为120,A、B,AC,BD,AC,BD,若AB=AC=BD=1,则CD的长_(答:2);(6)ABCD为菱形,DAB60,PD面ABCD,且PDAD,则面PAB与面PCD所成的锐二面角的大小为_(答:)。17、两个平面垂直的判定和性质:(1)判定:判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。定义法:即证两个相交平面所成的二面角为直二面角;(2)性质:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。如(1)三个平面两两垂直,它们的交线交于一点O,P到三个面的距离分别为3、4、5,则OP的长为_(答:5);(2)在四棱锥P-ABCD中,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 概念 方法 题型 误点 应试 技巧 总结 直线 平面 简单 多面体 10
限制150内