高二数学平面解析几何初步经典考试题(共8页).doc
《高二数学平面解析几何初步经典考试题(共8页).doc》由会员分享,可在线阅读,更多相关《高二数学平面解析几何初步经典考试题(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第2章 平面解析几何初步 综合检测(时间:120分钟;满分:150分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1直线3axy10与直线(a)xy10垂直,则a的值是()A1或B1或C或1 D或1解析:选D.由3a(a)(1)10,得a或a1.2直线l1:axyb0,l2:bxya0(a0,b0,ab)在同一坐标系中的图形大致是图中的()解析:选C.直线l1:axyb0,斜率为a,在y轴上的截距为b,设k1a,m1b.直线l2:bxya0,斜率为b,在y轴上的截距为a,设k2b,m2a.由A知:因为l1l2,k1k20,m1m2
2、0,即ab0,ba0,矛盾由B知:k10m20,即a0a0,矛盾由C知:k1k20,m2m10,即ab0,可以成立由D知:k1k20,m20m1,即ab0,a0b,矛盾3已知点A(1,1)和圆C:(x5)2(y7)24,一束光线从A经x轴反射到圆C上的最短路程是()A62 B8C4 D10解析:选B.点A关于x轴对称点A(1,1),A与圆心(5,7)的距离为10.所求最短路程为1028.4圆x2y21与圆x2y24的位置关系是()A相离 B相切C相交 D内含解析:选D.圆x2y21的圆心为(0,0),半径为1,圆x2y24的圆心为(0,0),半径为2,则圆心距00)及直线l:xy30,当直线l
3、被圆C截得的弦长为2时,a的值等于()A. B.1C2 D.1解析:选B.圆心(a,2)到直线l:xy30的距离d,依题意224,解得a1.6与直线2x3y60关于点(1,1)对称的直线是()A3x2y60B2x3y70C3x2y120D2x3y80解析:选D.所求直线平行于直线2x3y60,设所求直线方程为2x3yc0,由,c8,或c6(舍去),所求直线方程为2x3y80.7若直线y2k(x1)与圆x2y21相切,则切线方程为()Ay2(1x)By2(x1)Cx1或y2(1x)Dx1或y2(x1)解析:选B.数形结合答案容易错选D,但要注意直线的表达式是点斜式,说明直线的斜率存在,它与直线过
4、点(1,2)要有所区分8圆x2y22x3与直线yax1的公共点有()A0个 B1个C2个 D随a值变化而变化解析:选C.直线yax1过定点(0,1),而该点一定在圆内部9过P(5,4)作圆C:x2y22x2y30的切线,切点分别为A、B,四边形PACB的面积是()A5 B10C15 D20解析:选B.圆C的圆心为(1,1),半径为.|PC|5,|PA|PB|2,S2210.10若直线mx2ny40(m、nR,nm)始终平分圆x2y24x2y40的周长,则mn的取值范围是()A(0,1) B(0,1)C(,1) D(,1)解析:选C.圆x2y24x2y40可化为(x2)2(y1)29,直线mx2
5、ny40始终平分圆周,即直线过圆心(2,1),所以2m2n40,即mn2,mnm(2m)m22m(m1)211,当m1时等号成立,此时n1,与“mn”矛盾,所以mn1.11已知直线l:yxm与曲线y有两个公共点,则实数m的取值范围是()A(2,2) B(1,1)C1,) D(,)解析:选C. 曲线y表示单位圆的上半部分,画出直线l与曲线在同一坐标系中的图象,可观察出仅当直线l在过点(1,0)与点(0,1)的直线与圆的上切线之间时,直线l与曲线有两个交点当直线l过点(1,0)时,m1;当直线l为圆的上切线时,m(注:m,直线l为下切线)12过点P(2,4)作圆O:(x2)2(y1)225的切线l
6、,直线m:ax3y0与直线l平行,则直线l与m的距离为()A4 B2C. D.解析:选A.点P在圆上,切线l的斜率k.直线l的方程为y4(x2),即4x3y200.又直线m与l平行,直线m的方程为4x3y0.故两平行直线的距离为d4.二、填空题(本大题共4小题,请把答案填在题中横线上)13过点A(1,1),B(1,1)且圆心在直线xy20上的圆的方程是_解析:易求得AB的中点为(0,0),斜率为1,从而其垂直平分线为直线yx,根据圆的几何性质,这条直线应该过圆心,将它与直线xy20联立得到圆心O(1,1),半径r|OA|2.答案:(x1)2(y1)2414过点P(2,0)作直线l交圆x2y21
7、于A、B两点,则|PA|PB|_.解析:过P作圆的切线PC,切点为C,在RtPOC中,易求|PC|,由切割线定理,|PA|PB|PC|23.答案:315若垂直于直线2xy0,且与圆x2y25相切的切线方程为ax2yc0,则ac的值为_解析:已知直线斜率k12,直线ax2yc0的斜率为.两直线垂直,(2)()1,得a1.圆心到切线的距离为,即,c5,故ac5.答案:516若直线3x4ym0与圆x2y22x4y40没有公共点,则实数m的取值范围是_解析:将圆x2y22x4y40化为标准方程,得(x1)2(y2)21,圆心为(1,2),半径为1.若直线与圆无公共点,即圆心到直线的距离大于半径,即d1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 平面 解析几何 初步 经典 考试题
限制150内