2DPSK调制与解调电路设计(共20页).doc
《2DPSK调制与解调电路设计(共20页).doc》由会员分享,可在线阅读,更多相关《2DPSK调制与解调电路设计(共20页).doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上长 春 理 工 大 学信息综合训练课程设计报告2DPSK调制与解调电路学生姓名: 学 号: 电话:指导教师: 学 院:光电工程学院课程设计时间:2014 年 12 月 29 日 2015年 1 月 9日专心-专注-专业一、二进制差分相移键控(2DPSK)基本原理1.1 2DPSK信号基本原理传输系统中要保证信息的有效传输就必须要有较高的传输速率和很低的误码率!为了后的较低的误码率,就得让传输的信号又较低的误码率。在传输信号中,2PSK信号和2ASK及2FSK信号相比,具有较好的误码率性能,但是,在2PSK信号传输系统中存在相位不确定性,并将造成接收码元“0”和“1”的
2、颠倒,产生误码。为了保证2PSK的优点,又不会产生误码,将2PSK体制改进为二进制差分相移键控(2DPSK),及相对相移键控。2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用表示本码元初相与前一码元初相之差,并规定:0表示0码,表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图1所示。图1 2DPSK信号在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号
3、将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。定义 DF为本码元初相与前一码元初相之差,假设:DF=0数字信息“0”;DF=p数字信息“1”。则数字信息序列与2DPSK信号的码元相位关系可举例表示如下:数字信息: 1 0 1 1 0 1 1 1 0 1DPSK信号相位:(0) p p 0 p p 0 p 0 0 p或:(p) 0 0 p 0 0 p 0 p p 0采用p相位后,若已接收2DPSK序列为p0ppp0pp0,则经过解调后和逆码变换后可得基带信号,这一过程如下:2DPSK 信号:(0)p 0 p p p 0 p p 0 (p)0 p 0 0
4、0 p 0 0 p DF : p p p 0 0 p p 0 p p p p 0 0 p p 0 p变换后序列 :(0)1 0 1 1 1 0 1 1 0 (p) 0 1 0 0 0 1 0 0 1(相对码)基带信号 : 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 (绝对码) 虽然相同信噪比2DPSK信号的比2PSK稍高一点,但比2PSK要稳定得多。1.2 2DPSK信号的解调原理2DPSK信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。2DPSK信号解调的极性相位比较法:原理是2DPSK信号先经过带通滤波器,滤除调制信号频带以外的在信
5、道中混入的噪声,此后该信号分为两路,一路延时一个码元的时间后与另一路的信号相乘,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决,抽样判决器的输出即为原基带信号。它的原理框图如图1.3.2所示。延迟T相乘器低通滤波器抽样判决器2DPSK带通滤波器图2 极性比较解调原理图2DPSK信号解调的差分相干解调法:差分相干解调的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再
6、经过逆差分器,就得到了基带信号。它的原理框图如图3所示。带通滤波器相乘器低通滤波器抽样判决器逆码变换本地载波2DPSK图 3 差分相干解调原理图差分变换模型的功能是将输入的基带信号变为它的差分码。逆码变换器原理图如下:图 4 逆码变换原理框图相干解调是指利用乘法器,输入一路与载频相干(同频同相)的参考信号与载频相乘。原始信号 2DPSK 与载频 cos(t + ) 调制后得到信号 Acos(t + ); 解调时引入相干(同频同相)的参考信号 cos(t + ),则得到: Acos(t+)cos(t+) 利用积化和差公式可以得到 A*1/2*cos(t+t+)+cos(t+-t-) =A*1/2
7、*cos(2t+2)+cos(0) =A/2*cos(2t+2)+1 =A/2+A/2cos(2t+2) 利用低通滤波器将高频信号cos(2t+2)滤除,即得原始信号 A。 因此相干解调需要已知发送端的同步信号,在接收端需要相应的接收机和载波同步; 二、2DPSK解调电路部分的任务有用的信息具有有较高的传输速率和很低的误码率!传输速率越高,延时越小,有效性就越高;码元错误率低,信息失真越小,准确度就高。为了后的较低的误码率,就得让传输的信号又较低的误码率。在传输信号中,2PSK信号和2ASK及2FSK信号相比,具有较好的误码率性能,但2FSK对相位不敏感,为了保证2PSK的优点,又不会产生误码
8、,将2PSK体制改进为二进制差分相移键控(2DPSK),及相对相移键控。2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用表示本码元初相与前一码元初相之差,并规定:0表示0码;表示1码;则数字信息序列与2DPSK信号的码元相位关系可由不同相位直接去表示相应的数字信号而得出的,2DPSK信号最常用的解调方法有两种,一种是相位比较法,另一种是差分相干解调法。由于相位比较法对延时单元的精度要求较高,很难实现,而采用想干解调后,原理及电路比较容易实现,所以在接收端只能采用相干解调对2DPSK信号进行解调。2DPSK信号解调的差分相干解调法又称为极性比较法,其原理是2DPS
9、K信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。它的原理框图如图5所示。带通滤波 器低 通滤 波抽 样判 决逆码变换本地载波提 取相乘2DPSK基带信号图 5 相干解调法原理框图环路输入信号BS的频率等于2DPSK载频的2倍,即等于调制单元载波信号频率的2倍。环路锁定时VCO信号频率等于载波输出信号频率的两倍。所以在环路锁定状态下时,调制单元载波和载波同步单元的载波输出频率完全相等。并且在
10、环路锁定时,Ud不是一个纯净的直流信号,在直流电平上叠加有一个很小的交流信号。这种现象的产生是由于环路输入信号不是一个纯净的正弦信号所造成的。反复断开、接通电源我们就发现这两个信号有时同相,而有时反相。这就是我们所说的相干载波相位模糊现象。克服这种现象我们用相干解调,其解调原理是:先对2DPSK信号进行相干解调,恢复出相对码,再通过码反变换器变换为绝对码,从而恢复出发送的二进制数字信息。在解调过程中,相干载波产生180 相位模糊,解调出的相对码将产生倒置现象,但是经过码反变换后,输出的绝对码不会发生任何倒置现象,从而解决了载波相位模糊的问题。逆码变换电路采用如图6(a)所示的原理框图实现,它包
11、括一个微分镇流电路和一个脉冲展宽电路组成,差分变换的功能是将输入的基带信号变为它的差分码,然后经过逆码变换得到原来的传输信号,逆码变换器原理图6(a)如下: 图 6(a)逆码变换原理框图 图6(b)逆码变换波形三、2DPSK解调系统的设计 2DPSK相干解调原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。2DPSK信号解调的差分相干解调法,其原理是2DPSK信号先经过带通滤波
12、器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。它的原理框图如图5所示。带通滤波 器低 通滤 波抽 样判 决逆码变换本地载波提 取相乘2DPSK基带信号图 7 相干解调法原理框图四、2DPSK解调电路部分的实现1.带通滤波器在实际的通信系统中,解调的输入端输入2DPSK信号,在输入系统之前有一个带通滤波器来滤掉带外的白噪声,并确保系统能够正常运行,带通滤波器原理框图和电路如图所示:图7(a)带通滤波器原理框图
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- DPSK 调制 解调 电路设计 20
限制150内