2018年中考数学第一轮复习-第十九讲--解直角三角形(共12页).doc
《2018年中考数学第一轮复习-第十九讲--解直角三角形(共12页).doc》由会员分享,可在线阅读,更多相关《2018年中考数学第一轮复习-第十九讲--解直角三角形(共12页).doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第十九讲 解直角三角形【基础知识回顾】一、 锐角三角函数定义: 在RtABC中,C=900, A、B、C的对边分别为a、b、c,则A的正弦可表示为:sinA= ,A的余弦可表示为cosA= A的正切:tanA= ,它们统称为A的锐角三角函数【名师提醒:1、sinA、cosA、tanA表示的是一个整体,是两条线段的比,没有单位,这些比值只与 有关,与直角三角形的 无关2、取值范围 sinA , cosA 】二、特殊角的三角函数值:sincostan300450600【名师提醒:1、三个特殊角的三角函数值都是根据定义应用直角三角形性质算出来的,要在理解的基础上结合表格进行
2、记忆2、正弦和正切值随着角度的增大而 余弦值随着角度的增大而 3、几个特殊关系:sinA+cos2A= ,tanA=若A+B=900,则sinA= ,tanA.tanB= 】三、解直角三角形: 1、定义:由直角三角形中除直角外的 个已知元素,求出另外 个未知元素的过程叫解直角三角形 2、解直角三角形的依据:RtABC中,C=900 三边分别为a、b、c三边关系: 两锐角关系 边角之间的关系:sinA cosA tanA sinB cosB tanB 【名师提醒:解直角三角形中已知的两个元素应至少有一个是 当没有直角三角形时应注意构造直角三角形,再利用相应的边角关系解决】3、解直角三角形应用中的
3、有关概念仰角和俯角:如图:在图上标上仰角和俯角铅直线水平线视线视线 坡度坡角:如图:斜坡AB的垂直度h和水平宽度l的比叫做坡度,用i表示,即i= 坡面与水平面得夹角为 用字母表示,则i=tan=。方位角:是指南北方向线与目标方向所成的小于900的水平角 如图:OA表示 OB表示 OC表示 OD表示 (也可称东南方向)3、 利用解直角三角形知识解决实际问题的一般步骤: 把实际问题抓化为数学问题(画出平面图形,转化为解直角三角形的问题)根据条件特点,选取合适的锐角三角函数去解直角三角形解出数学问题答案,从而得到实际问题的答案【名师提醒:在解直角三角形实际应用中,先构造符合题意的三角形,解题的关键是
4、弄清在哪个直角三角形中用多少度角的哪种锐角三角函数解决】【重点考点例析】 考点一:锐角三角函数的概念例1 (2017贵阳)如图,P是的边OA上一点,点P的坐标为(12,5),则tan等于()A B C D 对应训练1(2017宿迁)如图,将AOB放置在55的正方形网格中,则tanAOB的值是()A B C D 1B考点二:特殊角的三角函数值例2 (2017杭州)在RtABC中,C=90,AB=2BC,现给出下列结论:sinA= ;cosB=;tanA=;tanB= ,其中正确的结论是 (只需填上正确结论的序号)对应训练2(2017重庆)计算6tan45-2cos60的结果是()A4B4C5D5
5、考点三:化斜三角形为直角三角形例3 (2017扬州)在ABC中,AB=AC=5,sinABC=0.8,则BC= 6对应训练3(2017陕西)如图,四边形ABCD的对角线AC,BD相交于点O,且BD平分AC若BD=8,AC=6,BOC=120,则四边形ABCD的面积为 (结果保留根号)考点四:解直角三角形的应用例4 (2017舟山)某学校的校门是伸缩门(如图1),伸缩门中的每一行菱形有20个,每个菱形边长为30厘米校门关闭时,每个菱形的锐角度数为60(如图2);校门打开时,每个菱形的锐角度数从60缩小为10(如图3)问:校门打开了多少米?(结果精确到1米,参考数据:sin50.0872,cos5
6、0.9962,sin100.1736,cos100.9848)思路分析:先求出校门关闭时,20个菱形的宽即大门的宽;再求出校门打开时,20个菱形的宽即伸缩门的宽;然后将它们相减即可解:如图,校门关闭时,取其中一个菱形ABCD根据题意,得BAD=60,AB=0.3米在菱形ABCD中,AB=AD,BAD是等边三角形,BD=AB=0.3米,大门的宽是:0.3206(米);如图,校门打开时,取其中一个菱形A1B1C1D1根据题意,得B1A1D1=10,A1B1=0.3米在菱形A1B1C1D1中,A1C1B1D1,B1A1O1=5,在RtA1B1O1中,B1O1=sinB1A1O1A1B1=sin50.
7、3=0.02616(米),B1D1=2B1O1=0.05232米,伸缩门的宽是:0.0523220=1.0464米;校门打开的宽度为:6-1.0464=4.95365(米)故校门打开了5米点评:本题考查了菱形的性质,解直角三角形的应用,难度适中解题的关键是把实际问题转化为数学问题,只要把实际问题抽象到解直角三角形中,一切将迎刃而解对应训练4(2017益阳)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,PAB=38.5,PBA=26.5请帮助小张求出小桥PD的长并确定小桥在小道上的位置(以A
8、,B为参照点,结果精确到0.1米)(参考数据:sin38.5=0.62,cos38.5=0.78,tan38.5=0.80,sin26.5=0.45,cos26.5=0.89,tan26.5=0.50)【聚焦山东高考】1(2017济南) cos30的值是 2(2017聊城)河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为()A12B4米C5米D6米3(2017潍坊)一渔船在海岛A南偏东20方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10方向匀速航行,20分钟后,救援船在
9、海岛C处恰好追上渔船,那么救援船航行的速度为()A10海里/小 B30海里/小时 C20海里/小时 D30海里/小时4(2017东营)某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60,在教学楼三楼D处测得旗杆顶部的仰角为30,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB的高度为 9米5(2017泰安)如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45方向,海监船航行到B处时望见渔船D在南偏东45方向,又航行了半小时到达C处,望见渔船D在南偏东60方向,若海监船的速度为50海里/小时,则A,B之间的距离为 67.
10、5(取1.7,结果精确到0.1海里)6(2017烟台)如图,一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:在指挥中心北偏西60方向的C地,有一艘渔船遇险,要求马上前去救援此时C地位于北偏西30方向上,A地位于B地北偏西75方向上,A、B两地之间的距离为12海里求A、C两地之间的距离(参考数据: 1.41, 1.73, 2.45,结果精确到0.1)7(2017莱芜)如图,有一艘渔船在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A、B上的观测点进行观测,从A岛测得渔船在南偏东37方向C处,B岛在南偏东66方向,从B岛测得渔船在正西方向,已知两个小岛间的距离是72海里,A岛上
11、维修船的速度为每小时20海里,B岛上维修船的速度为每小时28.8海里,为及时赶到维修,问调度中心应该派遣哪个岛上的维修船?(参考数据:cos370.8,sin370.6,sin660.9,cos660.4)8.(2017济宁)钓鱼岛及其附属岛屿是中国固有领土(如图1),A、B、C分别是钓鱼岛、南小岛、黄尾屿上的点(如图2),点C在点A的北偏东47方向,点B在点A的南偏东79方向,且A、B两点的距离约为5.5km;同时,点B在点C的南偏西36方向若一艘中国渔船以30km/h的速度从点A驶向点C捕鱼,需要多长时间到达(结果保留小数点后两位)?(参考数据:sin540.81,cos540.59,ta
12、n471.07,tan360.73,tan110.19)8.解:过点B作BDAC交AC于点D,由题意得,DAB=180-47-79=54,DCB=47-36=11,在RtABD中,AB=5.5,DAB=54,=cos54,=sin54,AD=5.50.59=3.245,BD=4.445,在RtBCD中,BD=4.445,DCB=11,=tan11,CD=23.394,AC=AD+CD=3.245+23.39426.64(km),则时间t=26.64300.90(h)答:需要0.90h到达9(2017青岛)如图,马路的两边CF,DE互相平行,线段CD为人行横道,马路两侧的A,B两点分别表示车站和
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 年中 数学 第一轮 复习 第十九 直角三角形 12
限制150内