2014年全国初中数学联合竞赛试题及详解(共7页).doc
《2014年全国初中数学联合竞赛试题及详解(共7页).doc》由会员分享,可在线阅读,更多相关《2014年全国初中数学联合竞赛试题及详解(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2014年全国初中数学联合竞赛试题及详解第一试一、选择题:(本题满分42分,每小题7分)1已知为整数,且满足,则的可能的值有( )A. 1个 B. 2个 C. 3个 D. 4个【答】 C.由已知等式得,显然均不为0,所以0或.若,则.又为整数,可求得或所以或.因此,的可能的值有3个.2已知非负实数满足,则的最大值为 ( )A B C D【答】 A.,易知:当,时,取得最大值.3在中,为的中点,于,交于,已知,则 ( )A B C D【答】 B.因为,所以四点共圆,所以,又,所以,所以.又易知,所以,从而可得.46张不同的卡片上分别写有数字2,2,4,4,6,6,从中取
2、出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是 ( )A B C D【答】 B.若取出的3张卡片上的数字互不相同,有2228种取法;若取出的3张卡片上的数字有相同的,有3412种取法.所以,从6张不同的卡片中取出3张,共有81220种取法.要使得三个数字可以构成三角形的三边长,只可能是:(2,4,4),(4,4,6),(2,6,6),(4,6,6),由于不同的卡片上所写数字有重复,所以,取出的3张卡片上所写的数字可以作为三角形的三边长的情况共有428种.因此,所求概率为.5设表示不超过实数的最大整数,令.已知实数满足,则 ( )A B C D1【答】 D.设,则,所以,因式分解
3、得,所以.由解得,显然,所以1.6在中,在上,在上,使得为等腰直角三角形, ,则的长为 ( )AB C D【答】 A.过作于,易知,.设,则,故,即.又,故可得.故.二、填空题:(本题满分28分,每小题7分)1已知实数满足,则_【答】 0.由题意知,所以整理得,所以0.2使得不等式对唯一的整数成立的最大正整数为 【答】144.由条件得,由的唯一性,得且,所以,所以.当时,由可得,可取唯一整数值127.故满足条件的正整数的最大值为144.3已知为等腰内一点,为的中点,与交于点,如果点为的内心,则 【答】.由题意可得,而,所以,从而可得.又,所以,从而.所以, ,所以.4已知正整数满足:,则 【答
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2014 全国 初中 数学 联合 竞赛 试题 详解
限制150内