《2010年福建高考理科数学试卷及答案解析(文字版)(共14页).doc》由会员分享,可在线阅读,更多相关《2010年福建高考理科数学试卷及答案解析(文字版)(共14页).doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2010年普通高等学校招生全国统一考试数学(理工农医类)(福建卷及详解)第I卷(选择题 共60分)一、选择题:本大题共12小题。每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。1的值等于( )A. B. C. D. 2以抛物线的焦点为圆心,且过坐标原点的圆的方程为( )A. B. C. D. 3设等差数列的前n项和为,若,则当取最小值时,n等于A.6 B.7 C.8 D.94函数的零点个数为 ( )A.0 B.1 C.2 D.35阅读右图所示的程序框图,运行相应的程序,输出的值等于( )A.2 B.3 C.4 D.56如图,若是长方体被平面截
2、去几何体后得到的几何体,其中E为线段上异于的点,F为线段上异于的点,且,则下列结论中不正确的是( )A. B.四边形是矩形 C. 是棱柱 D. 是棱台7若点O和点分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为 ( )A. B. C. D. 8设不等式组所表示的平面区域是,平面区域是与关于直线对称,对于中的任意一点A与中的任意一点B, 的最小值等于( )A. B.4 C. D.29对于复数,若集合具有性质“对任意,必有”,则当时,等于 ( )A.1 B.-1 C.0 D.10对于具有相同定义域D的函数和,若存在函数为常数),对任给的正数m,存在相应的,使得当且时,总有,
3、则称直线为曲线和的“分渐近线”.给出定义域均为D=的四组函数如下:, ; ,;,; ,.其中, 曲线和存在“分渐近线”的是( )A. B. C.D.二、填空题:11在等比数列中,若公比,且前3项之和等于21,则该数列的通项公式 .12若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于 .13某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮。假设某选手正确回答每个问题的概率都是,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于 。14已知函数和的图象的对称轴完全相同。若,则的取值范围是 。15已知定义域
4、为的函数满足:对任意,恒有成立;当时,。给出如下结论:对任意,有;函数的值域为;存在,使得;“函数在区间上单调递减”的充要条件是 “存在,使得”。其中所有正确结论的序号是 。三、解答题:16(本小题满分13分)设是不等式的解集,整数。(1)记使得“成立的有序数组”为事件A,试列举A包含的基本事件;(2)设,求的分布列及其数学期望。17(本小题满分13分)已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。(1)求椭圆C的方程;(2)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。18(本小题满分
5、13分)如图,圆柱内有一个三棱柱,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O直径。()证明:平面平面;()设AB=,在圆柱内随机选取一点,记该点取自于三棱柱内的概率为。(i)当点C在圆周上运动时,求的最大值;(ii)记平面与平面所成的角为,当取最大值时,求的值。19(本小题满分13分)。,轮船位于港口O北偏西且与该港口相距20海里的A处,并以30海里/小时的航行速度沿正东方向匀速行驶。假设该小船沿直线方向以海里/小时的航行速度匀速行驶,经过t小时与轮船相遇。(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方
6、案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由。20(本小题满分14分)()已知函数,。(i)求函数的单调区间;(ii)证明:若对于任意非零实数,曲线C与其在点处的切线交于另一点,曲线C与其在点处的切线交于另一点,线段()对于一般的三次函数()(ii)的正确命题,并予以证明。21本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题做答,满分14分。如果多做,则按所做的前两题计分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。(1)(本小题满分7分)选修4-2:矩阵与变换已知矩阵M=,且,()求实数的值;()求直线在矩
7、阵M所对应的线性变换下的像的方程。(2)(本小题满分7分)选修4-4:坐标系与参数方程在直角坐标系xoy中,直线的参数方程为(t为参数)。在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为。()求圆C的直角坐标方程;()设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|。(3)(本小题满分7分)选修4-5:不等式选讲已知函数。()若不等式的解集为,求实数的值;()在()的条件下,若对一切实数x恒成立,求实数m的取值范围。2010年普通高等学校招生全国统一考试数学(理工农医类)(福建卷及详解)一、选择题: 1.【解析】原式=,答案
8、A2.【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为,故所求圆的方程为,即答案 D3.【解析】设该数列的公差为,则,解得,所以,所以当时,取最小值。答案 A4.【解析】当时,令解得;当时,令解得,所以已知函数有两个零点,答案 C5.【解析】由程序框图可知,该框图的功能是输出使和时的的值加1,因为, 所以当时,计算到,故输出的是4答案 C6.【解析】因为,所以,又平面,所以平面,又平面,平面平面=,所以,故,所以选项A、C正确;因为平面,所以平面,又平面, 故,所以选项B也正确答案 D7.【解析】因为是已知双曲线的左焦点,所以,即,所以双曲线方程为,设点
9、P,则有,解得,因为,所以=,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最小值,故的取值范围是答案 B8.【解析】由题意知,所求的的最小值,即为区域中的点到直线的距离的最小值的两倍,画出已知不等式表示的平面区域,如图所示,可看出点(1,1)到直线的距离最小,故的最小值为答案 B9.【解析】由题意,可取,所以答案 B10.【解析】要透过现象看本质,存在分渐近线的充要条件是时,。对于,当时便不符合,所以不存在;对于,肯定存在分渐近线,因为当时,;对于,设且,所以当时越来愈大,从而会越来越小,不会趋近于0,所以不存在分渐近线;当时,因此存在分渐近线。故,存在分渐近线的是答案 C二、填空题
10、:11.【解析】由题意知,解得,所以通项。答案 12.【解析】由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,所以底面积为,侧面积为,所以其表面积为。答案 13.【解析】恰好回答四道,且连续两道答对停止答题,则尽可能是第一道答对,第二道答错、三、四道答对或者是前两道答错,后两道答对的情况,所以【答案】14、【解析】由题意知,因为,所以,由三角函数图象知:的最小值为,最大值为,所以的取值范围是。答案 15、【解析】,正确;取,则;,从而,其中,从而,正确;,假设存在使,即存在,又,变化如下:2,4,8,16,32,显然不存在,所以该命题错误;根据前面的分析容易知道该选项正确;综合有正确的序
11、号是.答案 三、解答题:16、【解析】(1)由得,即,由于整数且,所以A包含的基本事件为。(2)由于的所有不同取值为所以的所有不同取值为,且有,故的分布列为0149P所以=。17、【解析】(1)依题意,可设椭圆C的方程为,且可知左焦点为F(-2,0),从而有,解得,又,所以,故椭圆C的方程为。(2)假设存在符合题意的直线,其方程为,由得,因为直线与椭圆有公共点,所以有,解得,另一方面,由直线OA与的距离4可得:,从而,由于,所以符合题意的直线不存在。18、【解析】()因为平面ABC,平面ABC,所以,因为AB是圆O直径,所以,又,所以平面,而平面,所以平面平面。()(i)设圆柱的底面半径为,则
12、AB=,故三棱柱的体积为=,又因为,所以=,当且仅当时等号成立,从而,而圆柱的体积,故=当且仅当,即时等号成立,所以的最大值是。(ii)由(i)可知,取最大值时,于是以O为坐标原点,建立空间直角坐标系(如图),则C(r,0,0),B(0,r,0),(0,r,2r),因为平面,所以是平面的一个法向量,设平面的法向量,由,故,取得平面的一个法向量为,因为,所以。19、【解析】如图,由(1)得而小艇的最高航行速度只能达到30海里/小时,故轮船与小艇不可能在A、C(包含C)的任意位置相遇,设,OD=,由于从出发到相遇,轮船与小艇所需要的时间分别为和,所以,解得,从而值,且最小值为,于是当取得最小值,且
13、最小值为。此时,在中,故可设计航行方案如下:航行方向为北偏东,航行速度为30海里/小时,小艇能以最短时间与轮船相遇。20、【解析】()(i)由得=,当和时,;当时,因此,的单调递增区间为和,单调递减区间为。(ii)曲线C与其在点处的切线方程为得,即,解得,进而有,用代替,重复上述计算过程,可得和,又,所以因此有。()记函数的图象为曲线,类似于()(ii)的正确命题为:若对任意不等式的实数,曲线与其在点处的切线交于另一点,曲线C与其在点处的切线交于另一点,线段证明如下:因为平移变换不改变面积的大小,故可将曲线的对称中心平移至坐标原点,因而不妨设,类似(i)(ii)的计算可得,故。21、(1)【解析】()由题设得,解得;()因为矩阵M所对应的线性变换将直线变成直线(或点),所以可取直线上的两(0,0),(1,3),由,得:点(0,0),(1,3)在矩阵M所对应的线性变换下的像是(0,0),(-2,2),从而直线在矩阵M所对应的线性变换下的像的方程为。(2)选修4-4:坐标系与参数方程【解析】()由得即()将的参数方程代入圆C的直角坐标方程,得,即由于,故可设是上述方程的两实根,所以故由上式及t的几何意义得:|PA|+|PB|=。(3)选修4-5:不等式选讲【解析】()由得,解得,又已知不等式的解集为,所以,解得。()当时,设,于是=,所以当时,;当时,;当时,。专心-专注-专业
限制150内