2016--高二立体几何垂直证明题常见模型及方法(共13页).doc
《2016--高二立体几何垂直证明题常见模型及方法(共13页).doc》由会员分享,可在线阅读,更多相关《2016--高二立体几何垂直证明题常见模型及方法(共13页).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上立体几何垂直证明题常见模型及方法垂直转化:线线垂直 线面垂直 面面垂直; 基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型) 等腰(等边)三角形中的中线 菱形(正方形)的对角线互相垂直 勾股定理中的三角形 1:1:2 的直角梯形中 利用相似或全等证明直角。例:在正方体中,O为底面ABCD的中心,E为,求证:(2) 异面垂直 (利用线面垂直来证明,高考中的意图)例1 在正四面体ABCD中,求证变式1 如图,在四棱锥中,底面是矩形,已知证明:;变式2 如图,在边长为的正方形中,点是的中点,点是
2、的中点,将AED,DCF分别沿折起,使两点重合于.求证:;类型二:线面垂直证明 方法 利用线面垂直的判断定理 例2:在正方体中,O为底面ABCD的中心,E为,求证:变式1:在正方体中,,求证:变式2:如图:直三棱柱ABCA1B1C1中, AC=BC=AA1=2,ACB=90.E为BB1的中点,D点在AB上且DE=.求证:CD平面A1ABB1;DACOBE变式3:如图,在四面体ABCD中,O、E分别是BD、BC的中点,求证:平面BCD;变式4 如图,在底面为直角梯形的四棱锥中,平面,求证:平面 利用面面垂直的性质定理例3:在三棱锥P-ABC中,,,。方法点拨:此种情形,条件中含有面面垂直。变式1
3、, 在四棱锥,底面ABCD是正方形,侧面PAB是等腰三角形,且,求证:变式2:类型3:面面垂直的证明。(本质上是证明线面垂直)ABCDEF 例1 如图,已知平面,平面,为等边三角形,为的中点.(1) 求证:平面;(2) 求证:平面平面;例2 如图,在四棱锥中,底面,是的中点(1)证明; (2)证明平面;变式1已知直四棱柱ABCDABCD的底面是菱形,E、F分别是棱CC与BB上的点,且EC=BC=2FB=2(1)求证:平面AEF平面AACC;举一反三1.设M表示平面,a、b表示直线,给出下列四个命题: bM bM.其中正确的命题是 ( )A. B. C. D.2.下列命题中正确的是 ( )A.若
4、一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面3.如图所示,在正方形ABCD中,E、F分别是AB、BC的中点.现在沿DE、DF及EF把ADE、CDF和BEF折起,使A、B、C三点重合,重合后的点记为P.那么,在四面体PDEF中,必有 ( )第3题图A.DP平面PEF B.DM平面PEF C.PM平面DEF D.PF平面DEF4.设a、b是异面直线,下列命题正确的是 ( )
5、A.过不在a、b上的一点P一定可以作一条直线和a、b都相交B.过不在a、b上的一点P一定可以作一个平面和a、b都垂直C.过a一定可以作一个平面与b垂直D.过a一定可以作一个平面与b平行5.如果直线l,m与平面,满足:l=,l,m和m,那么必有 ( )A.且lm B.且m C.m且lm D.且6.AB是圆的直径,C是圆周上一点,PC垂直于圆所在平面,若BC=1,AC=2,PC=1,则P到AB的距离为 ( )A.1 B.2 C. D.7.有三个命题:垂直于同一个平面的两条直线平行;过平面的一条斜线l有且仅有一个平面与垂直; 异面直线a、b不垂直,那么过a的任一个平面与b都不垂直其中正确命题的个数为
6、 ( )A.0 B.1 C.2 D.38.d是异面直线a、b的公垂线,平面、满足a,b,则下面正确的结论是 ( )A.与必相交且交线md或m与d重合B.与必相交且交线md但m与d不重合C.与必相交且交线m与d一定不平行D.与不一定相交9.设l、m为直线,为平面,且l,给出下列命题 若m,则ml;若ml,则m;若m,则ml;若ml,则m,其中真命题的序号是 ( )A. B. C. D.10.已知直线l平面,直线m平面,给出下列四个命题:若,则lm;若,则lm;若lm,则;若lm,则.其中正确的命题是 ( )A.与 B.与 C.与 D.与二、思维激活第12题图11.如图所示,ABC是直角三角形,A
7、B是斜边,三个顶点在平面的同侧,它们在内的射影分别为A,B,C,如果ABC是正三角形,且AA3cm,BB5cm,CC4cm,则ABC的面积是 . 第11题图第13题图12.如图所示,在直四棱柱A1B1C1D1ABCD中,当底面四边形ABCD满足条件 时,有A1CB1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)13.如图所示,在三棱锥VABC中,当三条侧棱VA、VB、VC之间满足条件 时,有VCAB.(注:填上你认为正确的一种条件即可)三、能力提高14.如图所示,三棱锥V-ABC中,AH侧面VBC,且H是VBC的垂心,BE是VC边上的高.第14题图(1)求证:VCAB;(2)
8、若二面角EABC的大小为30,求VC与平面ABC所成角的大小.15.如图所示,PA矩形ABCD所在平面,M、N分别是AB、PC的中点.第15题图(1)求证:MN平面PAD.(2)求证:MNCD.(3)若PDA45,求证:MN平面PCD.16.如图所示,在四棱锥PABCD中,底面ABCD是平行四边形,BAD60,AB4,AD2,侧棱PB,PD.(1)求证:BD平面PAD. (2)若PD与底面ABCD成60的角,试求二面角PBCA的大小.第16题图17.已知直三棱柱ABC-A1B1C1中,ACB=90,BAC=30,BC=1,AA1=,M是CC1的中点,求证:AB1A1M 18.如图所示,正方体A
9、BCDABCD的棱长为a,M是AD的中点,N是BD上一点,且DNNB12,MC与BD交于P.(1)求证:NP平面ABCD. 第18题图(2)求平面PNC与平面CCDD所成的角.(3)求点C到平面DMB的距离.第4课 线面垂直习题解答1.A 两平行中有一条与平面垂直,则另一条也与该平面垂直,垂直于同一平面的两直线平行.2.C 由线面垂直的性质定理可知.3.A 折后DPPE,DPPF,PEPF.4.D 过a上任一点作直线bb,则a,b确定的平面与直线b平行.5.A依题意,m且m,则必有,又因为l=则有l,而m则lm,故选A.6.D过P作PDAB于D,连CD,则CDAB,AB=,PD=.7.D 由定
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2016 立体几何 垂直 证明 常见 模型 方法 13
限制150内