二次函数压轴题(共33页).doc
《二次函数压轴题(共33页).doc》由会员分享,可在线阅读,更多相关《二次函数压轴题(共33页).doc(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上面积类1如图,已知抛物线经过点A(1,0)、B(3,0)、C(0,3)三点(1)求抛物线的解析式(2)点M是线段BC上的点(不与B,C重合),过M作MNy轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长(3)在(2)的条件下,连接NB、NC,是否存在m,使BNC的面积最大?若存在,求m的值;若不存在,说明理由考点:二次函数综合题专题:压轴题;数形结合分析:(1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐
2、标的差的绝对值即为MN的长(3)设MN交x轴于D,那么BNC的面积可表示为:SBNC=SMNC+SMNB=MN(OD+DB)=MNOB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于SBNC、m的函数关系式,根据函数的性质即可判断出BNC是否具有最大值解答:解:(1)设抛物线的解析式为:y=a(x+1)(x3),则:a(0+1)(03)=3,a=1;抛物线的解析式:y=(x+1)(x3)=x2+2x+3(2)设直线BC的解析式为:y=kx+b,则有:,解得;故直线BC的解析式:y=x+3已知点M的横坐标为m,MNy,则M(m,m+3)、N(m,m2+2m+3);故MN=m2+2m+3
3、(m+3)=m2+3m(0m3)(3)如图;SBNC=SMNC+SMNB=MN(OD+DB)=MNOB,SBNC=(m2+3m)3=(m)2+(0m3);当m=时,BNC的面积最大,最大值为2如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0)(1)求抛物线的解析式;(2)试探究ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求MBC的面积的最大值,并求出此时M点的坐标考点:二次函数综合题.专题:压轴题;转化思想分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可(2)首先根据抛物线的解析式确定A点坐标,然后通
4、过证明ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标(3)MBC的面积可由SMBC=BCh表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M解答:解:(1)将B(4,0)代入抛物线的解析式中,得:0=16a42,即:a=;抛物线的解析式为:y=x2x2(2)由(1)的函数解析式可求得:A(1,0)、C(0,2);OA=1,OC=2,OB=4,即:OC2=OAOB,又:OCAB,OACOCB,得:OCA=OBC;ACB=OCA+OCB=OBC+OCB=90,ABC为直角三角形,A
5、B为ABC外接圆的直径;所以该外接圆的圆心为AB的中点,且坐标为:(,0)(3)已求得:B(4,0)、C(0,2),可得直线BC的解析式为:y=x2;设直线lBC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2x2,即: x22x2b=0,且=0;44(2b)=0,即b=4;直线l:y=x4所以点M即直线l和抛物线的唯一交点,有:,解得:即 M(2,3)过M点作MNx轴于N,SBMC=S梯形OCMN+SMNBSOCB=2(2+3)+2324=4平行四边形类3如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,3),点P是直
6、线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t(1)分别求出直线AB和这条抛物线的解析式(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求ABM的面积(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由考点:二次函数综合题;解一元二次方程因式分解法;待定系数法求一次函数解析式;待定系数法求二次函数解析式;三角形的面积;平行四边形的判定.专题:压轴题;存在型分析:(1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,3)分别代入y=x2+mx+n与y=kx+b,得到关于m、n的两
7、个方程组,解方程组即可;(2)设点P的坐标是(t,t3),则M(t,t22t3),用P点的纵坐标减去M的纵坐标得到PM的长,即PM=(t3)(t22t3)=t2+3t,然后根据二次函数的最值得到当t=时,PM最长为=,再利用三角形的面积公式利用SABM=SBPM+SAPM计算即可;(3)由PMOB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t22t3)(t3)=3;当P在第三象限:PM=OB=3,t23t=3,分别解一元二次方程即可得到满足条件的t的
8、值解答:解:(1)把A(3,0)B(0,3)代入y=x2+mx+n,得解得,所以抛物线的解析式是y=x22x3设直线AB的解析式是y=kx+b,把A(3,0)B(0,3)代入y=kx+b,得,解得,所以直线AB的解析式是y=x3;(2)设点P的坐标是(t,t3),则M(t,t22t3),因为p在第四象限,所以PM=(t3)(t22t3)=t2+3t,当t=时,二次函数的最大值,即PM最长值为=,则SABM=SBPM+SAPM=(3)存在,理由如下:PMOB,当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,当P在第四象限:PM=OB=3,PM最长时只有,所以不可能有PM=3当P在第一
9、象限:PM=OB=3,(t22t3)(t3)=3,解得t1=,t2=(舍去),所以P点的横坐标是;当P在第三象限:PM=OB=3,t23t=3,解得t1=(舍去),t2=,所以P点的横坐标是所以P点的横坐标是或4如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90,得到ABO(1)一抛物线经过点A、B、B,求该抛物线的解析式;(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PBAB的面积是ABO面积4倍?若存在,请求出P的坐标;若不存在,请说明理由(3)在(2)的条件下,试指出四边形PBAB是哪种形状的四
10、边形?并写出四边形PBAB的两条性质考点:二次函数综合题.专题:压轴题分析:(1)利用旋转的性质得出A(1,0),B(0,2),再利用待定系数法求二次函数解析式即可;(2)利用S四边形PBAB=SBOA+SPBO+SPOB,再假设四边形PBAB的面积是ABO面积的4倍,得出一元二次方程,得出P点坐标即可;(3)利用P点坐标以及B点坐标即可得出四边形PBAB为等腰梯形,利用等腰梯形性质得出答案即可解答:解:(1)ABO是由ABO绕原点O逆时针旋转90得到的,又A(0,1),B(2,0),O(0,0),A(1,0),B(0,2)方法一:设抛物线的解析式为:y=ax2+bx+c(a0),抛物线经过点
11、A、B、B,解得:,满足条件的抛物线的解析式为y=x2+x+2方法二:A(1,0),B(0,2),B(2,0),设抛物线的解析式为:y=a(x+1)(x2)将B(0,2)代入得出:2=a(0+1)(02),解得:a=1,故满足条件的抛物线的解析式为y=(x+1)(x2)=x2+x+2;(2)P为第一象限内抛物线上的一动点,设P(x,y),则x0,y0,P点坐标满足y=x2+x+2连接PB,PO,PB,S四边形PBAB=SBOA+SPBO+SPOB,=12+2x+2y,=x+(x2+x+2)+1,=x2+2x+3AO=1,BO=2,ABO面积为:12=1,假设四边形PBAB的面积是ABO面积的4
12、倍,则4=x2+2x+3,即x22x+1=0,解得:x1=x2=1,此时y=12+1+2=2,即P(1,2)存在点P(1,2),使四边形PBAB的面积是ABO面积的4倍 (3)四边形PBAB为等腰梯形,答案不唯一,下面性质中的任意2个均可等腰梯形同一底上的两个内角相等;等腰梯形对角线相等;等腰梯形上底与下底平行;等腰梯形两腰相等(10分)或用符号表示:BAB=PBA或ABP=BPB;PA=BB;BPAB;BA=PB(10分)5如图,抛物线y=x22x+c的顶点A在直线l:y=x5上(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断ABD的形
13、状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由考点:二次函数综合题.专题:压轴题;分类讨论分析:(1)先根据抛物线的解析式得出其对称轴,由此得到顶点A的横坐标,然后代入直线l的解析式中即可求出点A的坐标(2)由A点坐标可确定抛物线的解析式,进而可得到点B的坐标则AB、AD、BD三边的长可得,然后根据边长确定三角形的形状(3)若以点P、A、B、D为顶点的四边形是平行四边形,应分AB为对角线、AD为对角线两种情况讨论,即ADPB、ABPD,然后结合勾股定理以及边长的等量关系列方程求出P点的坐标解答:解:(1)顶点A的横
14、坐标为x=1,且顶点A在y=x5上,当x=1时,y=15=4,A(1,4)(2)ABD是直角三角形将A(1,4)代入y=x22x+c,可得,12+c=4,c=3,y=x22x3,B(0,3)当y=0时,x22x3=0,x1=1,x2=3C(1,0),D(3,0),BD2=OB2+OD2=18,AB2=(43)2+12=2,AD2=(31)2+42=20,BD2+AB2=AD2,ABD=90,即ABD是直角三角形(3)存在由题意知:直线y=x5交y轴于点E(0,5),交x轴于点F(5,0)OE=OF=5,又OB=OD=3OEF与OBD都是等腰直角三角形BDl,即PABD则构成平行四边形只能是PA
15、DB或PABD,如图,过点P作y轴的垂线,过点A作x轴的垂线交过P且平行于x轴的直线于点G设P(x1,x15),则G(1,x15)则PG=|1x1|,AG=|5x14|=|1x1|PA=BD=3由勾股定理得:(1x1)2+(1x1)2=18,x122x18=0,x1=2或4P(2,7)或P(4,1),存在点P(2,7)或P(4,1)使以点A、B、D、P为顶点的四边形是平行四边形周长类6如图,RtABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上(1)求抛物线对应的函数关系
16、式;(2)若把ABO沿x轴向右平移得到DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得PBD的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作BD交x轴于点N,连接PM、PN,设OM的长为t,PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由考点:二次函数综合题.专题:压轴题分析:(1)根据抛物线y=经过点B
17、(0,4),以及顶点在直线x=上,得出b,c即可;(2)根据菱形的性质得出C、D两点的坐标分别是(5,4)、(2,0),利用图象上点的性质得出x=5或2时,y的值即可(3)首先设直线CD对应的函数关系式为y=kx+b,求出解析式,当x=时,求出y即可;(4)利用MNBD,得出OMNOBD,进而得出,得到ON=,进而表示出PMN的面积,利用二次函数最值求出即可解答:解:(1)抛物线y=经过点B(0,4)c=4,顶点在直线x=上,=,b=;所求函数关系式为;(2)在RtABO中,OA=3,OB=4,AB=,四边形ABCD是菱形,BC=CD=DA=AB=5,C、D两点的坐标分别是(5,4)、(2,0
18、),当x=5时,y=,当x=2时,y=,点C和点D都在所求抛物线上;(3)设CD与对称轴交于点P,则P为所求的点,设直线CD对应的函数关系式为y=kx+b,则,解得:,当x=时,y=,P(),(4)MNBD,OMNOBD,即得ON=,设对称轴交x于点F,则(PF+OM)OF=(+t),SPNF=NFPF=(t)=,S=(),=(0t4),a=0抛物线开口向下,S存在最大值由SPMN=t2+t=(t)2+,当t=时,S取最大值是,此时,点M的坐标为(0,)等腰三角形类7如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120至OB的位置(1)求点B的坐标;(2)求经过点A、O、B的抛物线的
19、解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由考点:二次函数综合题.专题:压轴题;分类讨论分析:(1)首先根据OA的旋转条件确定B点位置,然后过B做x轴的垂线,通过构建直角三角形和OB的长(即OA长)确定B点的坐标(2)已知O、A、B三点坐标,利用待定系数法求出抛物线的解析式(3)根据(2)的抛物线解析式,可得到抛物线的对称轴,然后先设出P点的坐标,而O、B坐标已知,可先表示出OPB三边的边长表达式,然后分OP=OB、OP=BP、OB=BP三种情况分类讨论,然后分辨是否存在符合条件的P点解答:解:(1)如
20、图,过B点作BCx轴,垂足为C,则BCO=90,AOB=120,BOC=60,又OA=OB=4,OC=OB=4=2,BC=OBsin60=4=2,点B的坐标为(2,2);(2)抛物线过原点O和点A、B,可设抛物线解析式为y=ax2+bx,将A(4,0),B(22)代入,得,解得,此抛物线的解析式为y=x2+x(3)存在,如图,抛物线的对称轴是直线x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),若OB=OP,则22+|y|2=42,解得y=2,当y=2时,在RtPOD中,PDO=90,sinPOD=,POD=60,POB=POD+AOB=60+120=180,即P、O、B三点在同一
21、直线上,y=2不符合题意,舍去,点P的坐标为(2,2)若OB=PB,则42+|y+2|2=42,解得y=2,故点P的坐标为(2,2),若OP=BP,则22+|y|2=42+|y+2|2,解得y=2,故点P的坐标为(2,2),综上所述,符合条件的点P只有一个,其坐标为(2,2),8在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(1,0),如图所示:抛物线y=ax2+ax2经过点B(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 压轴 33
限制150内