2017苏教版五年级(下册)数学知识点总结(共7页).doc
《2017苏教版五年级(下册)数学知识点总结(共7页).doc》由会员分享,可在线阅读,更多相关《2017苏教版五年级(下册)数学知识点总结(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上苏教版五年级(下册)数学知识点和方法总结第一单元:简易方程1、表示相等关系的式子叫作等式。如:20+30=50 a+20=302、含有未知数的等式是方程。如:X+Y=40,30+b=503、方程一定是等式;等式不一定是方程。如:20+30=50是等式,但不是方程,它不含有未知数。4、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。等式两边同时乘或除以同一个不是0的数,所得结果仍然是等式。这也是等式的性质。5、使方程左右两边相等的未知数的值叫作方程的解。如x=30是20+x=50的解,不能说30是20+x=50的解。6、求方程的解的过程,叫作解方程。
2、解方程步骤:(1)写解;(2)=上下对齐;(3)运用等式的性质解方程;(4)注意:解完方程,要养成检验的好习惯,把求得的解代入原方程,看等号左右两边是否相等。解方程时常用的关系式:一个加数和另一个加数 减数被减数差被减数减数差 一个因数积另一个因数除数被除数商 被除数商除数7、三个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的3倍。五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。8、列方程解应用题的思路:审题并弄懂题目的已知条件和所求问题。理清题目的数量关系,找准等量关系式。设未知数,一般是把问题中的量用X表示。根据数量关系列出方程。解方程。检验。(
3、把方程结果代入原题检验)写答句。注意书写应规范:设句中要有单位名称,求得的x的值的后面不写单位名称。9、找等量关系的方法:根据条件想数量间的相等关系。根据计算公式确定等量关系。稍复杂的条件可以画出线段图找等量关系。第二单元:折线统计图1、从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,直接表示增减变化的速度,而且便于这两组相关数据进行比较。2、作复式折线统计图步骤:写标题和统计时间;注明图例(实线和虚线表示);分别描点、标数;实线和虚线的区分(画线用直尺)。注意:先画表示实线的统计图,再画虚线统计图。不能同时描点画线,以免混淆。(也可以先画虚线的统计图)第三单元:因数与倍数1、4
4、3=12,4和3都是12的因数,12是4的倍数,也是3的倍数。一定要说谁是谁的因数,谁是谁的倍数。研究因数和倍数时,所说的数一般指不是0的自然数。2、一个数最小的因数是1,最大的因数是它本身,一个数的因数的个数是有限的。一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。一个数最大的因数等于这个数最小的倍数。3、是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。4、2的倍数特征:个位上是0、2、4、6、8;5的倍数特征:个位上是0或5;3的倍数特征:各个数位上数字之和是3的倍数。2和5的倍数特征:个位是0。4、只有1和它本身两个因数的数叫作质数(素数);除了1和它本身还有别的因
5、数的数叫作合数。1既不是质数,也不是合数。如果一个数的因数是质数,这个因数就是它的质因数;把一个合数用质数相乘的形式表示出来,叫作分解质因数。如:14=27 18=2335、几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做这几个数的最大公因数。用符号( ,)表示。几个数的公因数也是有限的。6、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。用符号 ,表示。几个数的公倍数也是无限的。7、两个质数(素数)的积一定是合数。举例:35=15,15是合数。8、两个数的最小公倍数一定是它们的最大公因数的倍数。举例:6,8=24,(6,8)=2,24是2的倍数。
6、两个数的最大公因数与最小公倍数的乘积等于这两个数的乘积。举例:(6,8)=2,6,8=24, 242=689、求最大公因数和最小公倍数的方法:(1)两个数有倍数关系,最大公因数是较小的数,最小公倍数是较大的数。举例:15和5, (15,5)=5, 15,5=15。(2) 有一个数是质数,与另一个数没有倍数关系。最大公因数是,最小公倍数是它们的乘积。举例:3和7, (3,7)=1 , 3,7=21(3)、相邻关系的两个数,最大公因数是1,最小公倍数是它们的乘积。(9,8)=1, 9,8=72,(4)、1和任意非0自然数,最大公因数是1,最小公倍数是它们的乘积,(1,6)=1,1,6=6一般关系的
7、两个数,求最大公因数用小数列举法或小数缩减法,求最小公倍数用大数翻倍法。10、和与积的奇偶性奇数+奇数=偶数;偶数+偶数=偶数;奇数+偶数=奇数;加数中有1个、3个、5个奇数时,和一定是奇数。例:1+3+5+29的和是奇数,加数是15个,15是奇数,和就是奇数;加数中有2个、4个、6个奇数时,和一定是偶数。1+3+5+27的和是偶数,加数是14个,14是偶数,和就是偶数。乘数都是奇数时,积也是奇数。如:135=15乘数都是偶数时,积也是偶数。如:8410=840几个乘数中,只要有一个偶数,积一定是偶数。如:3572=210(2是偶数)奇数偶数=偶数;偶数偶数=偶数第四单元:分数的意义和性质1、
8、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。分母越大,分数单位越小,分数单位是由分母决定的。2、在描述分数的意义时,要找准单位“1”,像1节课 2/3小时,一根绳子长,2/3米,这种分数后带单位名称的情况,单位“1”就是“1小时”、“1米”这样的一个计量单位;若分数后无单位,则单位1在给定的情境中寻找。3、举例说明一个分数的意义:3/7表示把单位“1”平均分成7份,表示这样的3份;还表示把平均分成份
9、,表示这样的份。3/7吨表示把1吨平均分成7份,表示这样的3份;还表示把吨平均分成份,表示这样的份。4、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。5、真分数小于。假分数大于或等于。真分数总是小于假分数。能化成整数的假分数,它们的分子都是分母的倍数。反过来,分子是分母倍数的假分数,都能化成整数。分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。带分数是假分数的另一种形式。带分数都大于真分数,同时也都大于1。6、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。被除数除数被除数/除数,如果用a表示被除数,b表示除数,可以写成a
10、ba/b(b0)利用分数与除法的关系还可以把分数化成小数的方法:用分数的分子除以分母。7、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,8、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。把带分数转化成假分数的方法:分母不变,整数部分乘分母再加上分子,作为假分数的分子。9、看一个带分数里面有几个分数单位,通常要先把带分数转化成假分数,再看分子是几,就有几个分数单位。10、把不是0的整数化成假分数的方
11、法:用整数与分母相乘的积作分子。11、大于3/7而小于5/7的分数有无数个;分数单位是1/7只有4/7一个。12、分数大小比较方法:通分法、化成小数比较法、二分之一比较法、1的比较法。分数小数大小比较方法:把其中的分数化成小数比较或把其中的小数化成分数比较。13、分数的基本性质:分数的分子和分母同时乘或除以一个相同的数(0除外),分数的大小不变。11、把一个分数化成同它相等,但分子、分母都比较小的分数,叫作约分;分子、分母只有公因数1的分数叫作最简分数。约分时,通常要约成最简分数。约分方法:直接除以分子、分母的最大公因数。12、把几个分母不同的分数(也叫作异分母分数)分别化成和原来分数相等的同
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 苏教版五 年级 下册 数学 知识点 总结
限制150内