2019年高考数学考点突破——随机变量及其分布(理科专用):二项分布与正态分布(共9页).doc
《2019年高考数学考点突破——随机变量及其分布(理科专用):二项分布与正态分布(共9页).doc》由会员分享,可在线阅读,更多相关《2019年高考数学考点突破——随机变量及其分布(理科专用):二项分布与正态分布(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上二项分布与正态分布【考点梳理】1条件概率条件概率的定义条件概率的性质设A,B为两个事件,且P(A)0,称P(B|A)为在事件A发生的条件下,事件B发生的条件概率(1)0P(B|A)1;(2)如果B和C是两个互斥事件,则P(BC|A)P(B|A)P(C|A)2事件的相互独立性(1)定义:设A,B为两个事件,如果P(AB)P(A)P(B),则称事件A与事件B相互独立.(2)性质:若事件A与B相互独立,则A与,与B,与也都相互独立,P(B|A)P(B),P(A|B)P(A).3独立重复试验与二项分布(1)独立重复试验在相同条件下重复做的n次试验称为n次独立重复试验,其中Ai
2、(i1,2,n)是第i次试验结果,则P(A1A2A3An)P(A1)P(A2)P(A3)P(An).(2)二项分布在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(Xk)Cpk(1p)nk(k0,1,2,n),此时称随机变量X服从二项分布,记作XB(n,p),并称p为成功概率.4正态分布(1)正态分布的定义如果对于任何实数a,b(ab),随机变量X满足P(aXb),(x)dx,则称随机变量X服从正态分布,记为XN(,2).其中,(x)(0).(2)正态曲线的性质曲线位于x轴上方,与x轴不相交,与x轴之间的面积为1;曲线是单峰的,它关于直线x对称;曲线在x处
3、达到峰值;当一定时,曲线的形状由确定,越小,曲线越“瘦高”,表示总体的分布越集中;越大,曲线越“矮胖”,表示总体的分布越分散.(3)正态总体在三个特殊区间内取值的概率值P(X)0.6826;P(2X2)0.9544;P(3X3)0.9974.【考点突破】考点一、条件概率【例1】(1)如图,EFGH是以O为圆心,半径为1的圆的内接正方形将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则P(B|A)_.(2)某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为,两次闭合后都出现红灯的概率为,则在第一次闭合
4、后出现红灯的条件下第二次闭合后出现红灯的概率为()A B C D答案 (1) (2) C解析 (1)由题意可得,事件A发生的概率P(A).事件AB表示“豆子落在EOH内”,则P(AB).故P(B|A).(2)设“开关第一次闭合后出现红灯”为事件A,“第二次闭合后出现红灯”为事件B,则由题意可得P(A),P(AB),则在第一次闭合后出现红灯的条件下第二次闭合出现红灯的概率是P(B|A).故选C.【类题通法】1. 利用定义,分别求P(A)和P(AB),得P(B|A),这是求条件概率的通法.2. 借助古典概型概率公式,先求事件A包含的基本事件数n(A),再求事件A与事件B的交事件中包含的基本事件数n
5、(AB),得P(B|A).【对点训练】1从1,2,3,4,5中任取2个不同的数,事件A“取到的2个数之和为偶数”,事件B“取到的2个数均为偶数”,则P(B|A)()A B C D答案 B解析 法一 P(A),P(AB).由条件概率计算公式,得P(B|A).法二事件A包括的基本事件:(1,3),(1,5),(3,5),(2,4)共4个.事件AB发生的结果只有(2,4)一种情形,即n(AB)1.故由古典概型概率P(B|A).2某盒中装有10只乒乓球,其中6只新球、4只旧球,不放回地依次摸出2个球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为()A B C D答案 B解析 第一次摸出新球记
6、为事件A,则P(A),第二次取到新球记为事件B,则P(AB),P(B|A).考点二、相互独立事件同时发生的概率【例2】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,.(1)记X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列;(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率解析 (1)随机变量X的所有可能取值为0,1,2,3.P(X0),P(X1),P(X2),P(X3).所以随机变量X的分布列为:X0123P (2)设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为P(YZ1)P(Y0,Z
7、1)P(Y1,Z0)P(Y0)P(Z1)P(Y1)P(Z0).所以这2辆车共遇到1个红灯的概率为.【类题通法】求相互独立事件同时发生的概率的主要方法利用相互独立事件的概率乘法公式直接求解.正面计算较繁(如求用“至少”表述的事件的概率)或难以入手时,可从其对立事件入手计算.【对点训练】某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A,乙组研发新产品B.设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元.求该企业可获利润的分布列.解析 记E甲组研
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年高 数学 考点 突破 随机变量 及其 分布 理科 专用 二项分布 正态分布
限制150内