初中数学解答错典型例题分析与反思(共8页).docx
《初中数学解答错典型例题分析与反思(共8页).docx》由会员分享,可在线阅读,更多相关《初中数学解答错典型例题分析与反思(共8页).docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上错题案例分析与反思众所周知,初中学生的心理正从依赖向独立过度,因此这正是培养学生自信心和自我调节能力的时机。在新课程教学的要求下,数学教学变得更加强调学生的自主学习和自主探究。因此,在这个过程中,出现认知上的偏差也是正常的。作为教师,就应该深刻认识到这个时期的学生的心理特征以及从提高学生数学素质的根本点出发,对学生出现的错题进行深刻分析和反思。相信这样的一个分析和反思,是可以成为学生以后学习的积极动力的。初中数学涉及到几何证明的问题。对于几何,很多学生都会感到比较困扰。因此,在初中几何数学的教学中,教师应该针对学生的特点,找出适合学生的教学方法。例如:在ABC中,D是
2、BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF;如图所示:(1)求证BD=CD;(2)AB=AC,试判断四边形AFBD的形状。【错解】(1)证明:AF/BCAFE=DCE又AFE=CEDE是AD的中点AE=DEAEFCEDAF=CD又AF=BDBD=CD(2)四边形AFBD是平行四边形证明:AF/BC即AF/BD又AF=BD四边形AFBD是平行四边形【错误原因】题目主要考查的是几何图形边相等的证明以及判断图形形状。错解的答案中(2)的结论是错误的。从边平行和对应边相等推出图形是平行四边形是正确的,可是题目中还给出了ABC中,D是BC边上的一点,
3、还给出如果AB=AC这一条件,学生在完成这一题时忽视了给的如果这一已知条件,考虑和分析问题不全面。【正解】四边形AFBD是矩形证明:AF/BC即AF/BD又AF=BD四边形AFBD是平行四边形又AB=ACABC是等腰三角形又BD=CD即D是BC的中点AD是BC边上的高ADB=90四边形AFBD是矩形【教学反思】该练习题是在学生相继学习了平行线性质及判定、三角形全等性质及判定、平形四边形性质及判定一系列知识后出现的练习题,虽然有关的内容不是存在于同一本书中,但是不难发现其中的逻辑关系。就像这道例题一样,想要证明边相等,就要知道从角相等,边平行等条件找出是否有相似或者全等的三角形,从而推断出边是否
4、相等。然后就要清楚了解三角形全等的条件有哪些:分别是(1)三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。(2)两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。(3)两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。(4)两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。从三角形全等的条件中又涉及到有关于七年级数学上册书本中的角,边的知识。从以上的分析不难看出,数学知识是存在一定的逻辑联系的。只要把底层的摸清楚了,就可以顺藤摸瓜,摘到你想要的果实。在教学中,应该强调逻辑关系的重要性,初中生正处于成长转变的时期,
5、其时期特点适合逻辑性,自主性的培养。教师在上课的时候,除了在讲授当堂内容之外,可以适当进行内容的扩展和延伸,或者将涉及到的相关知识点在和学生一起回忆一遍,这样既可以加深学生对课堂内容的印象,也可以让学生对过往知识进行巩固。数学的几何题目是很讲究逻辑思维的,因此教师除了让学生加强练习之外,还可以设计一些有关于逻辑性培养的游戏让学生寓学于乐。逻辑性的游戏不一定要与书本内容相关,通过逻辑性游戏,学生不仅可以放松心情,还有助于学生之后的学习。错题案例分析与反思从接触数学开始,就开始接触计算、因此来说,数学中最常见的就是计算类题目。有些题目看似简单,但往往也是让学生最容易掉进去的陷阱。【典型错题】计算:
6、-22+8(-2)3-2(- ):【错解】-22+8(-2)3-2(- )=4+8(-8)-2(- )=4-1+=【错误原因】题目主要考查学生的有理数运算能力以及对有理数运算法则的掌握程度。看到题目中-22,学生自然而然就会想到答案是4.因为学生往往只记住了负数的偶次方是正数。可是在这道题目中,负号和2并不是用括号括起来表示的,因此表示的仅仅是2的平方,而不是-2的平方。【正解】-22+8(-2)3-2(- )=-4+8(-8)-2(- )=-4-1+=- 【教学反思】在人教版七年级数学的教材中,上册就开始给学生们讲述有理数的知识。小学的数学计算涉及到的数都是正数。而从七年级上册的第一章内容中
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 解答 典型 例题 分析 反思
限制150内