《数学广角──植树问题》课标解读(共7页).docx
《《数学广角──植树问题》课标解读(共7页).docx》由会员分享,可在线阅读,更多相关《《数学广角──植树问题》课标解读(共7页).docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上数学广角植树问题课标解读 一、课标要求义务教育数学课程标准(2011年版)在“总目标”中提出了“在参与观察、实验、猜想、证明、综合实践等数学活动中,发展合情推理和演绎推理能力,清晰地表达自己的想法”“学会独立思考,体会数学的基本思想和思维方式”。义务教育数学课程标准(2011年版)在“学段目标”的“第二学段”中提出“尝试从日常生活中发现并提出简单的数学问题,并运用一些知识加以解决”“能探索分析和解决简单问题的有效方法,了解解决问题方法的多样性”。义务教育数学课程标准(2011年版)在“课程内容”的“第二学段”中提出“通过应用和反思,进一步理解所用的知识和方法,了解所学
2、知识之间的联系,获得数学活动经验”。 二、课标解读教材中设置“数学广角”单元教学内容的目的不是教会学生机械的公式和抽象的模型,而是让学生体验探索建立模型的过程和数学思想方法。在本册的“数学广角植树问题”的教学中,教师要引导学生通过观察、猜测、试验、推理等活动,初步体会解决植树问题的思想方法(模型思想),培养学生从实际问题中探索解决问题有效方法的能力。在教学植树问题时,教师要引导学生根据实际问题情境,从简单的情况入手,在解决问题的分析、思考过程中,逐步发现隐含的规律,经历建立数学模型的过程,帮助学生积累数学活动的经验,提高学生解决实际问题的能力。(一)在观察、猜测、试验、推理等活动中体会解决基本
3、的思想方法小学数学教学体系贯穿着两条主线:数学知识和数学思想方法。数学知识是一条明线,直接呈现在教材上;而数学思想方法则是一条暗线,隐藏在知识的背后。“数学广角”中的“植树问题”,承载了基本的数学思想方法“化繁为简”“数形结合”“一一对应”和“数学建模”等,使学生从中发现规律,抽取出其中的数学模型(点段关系),然后再用发现的规律来解决生活中的一些简单实际问题。1在困顿中感悟“化归”的思想人们在面对数学问题时,如果直接应用已有知识不能或不易解决该问题时,往往将需要解决的问题不断转化形式,把它归结为能够解决或比较容易解决的问题,最终使原问题得到解决,这种思想方法称为化归(转化)思想。在教学例1中,
4、教师引导学生对“100米一共要栽多少棵树”进行验证,在画图时引发困惑,数字太大,不可能全部画下来,或是太麻烦、太浪费时间了。在学生有所体验的基础上,就此向学生渗透复杂问题简单化的思想,让学生选择短距离(20米),用画图的方式得出结果。在这个过程中,学生通过猜想、实验、推理、交流等活动,既培养了数学思想能力,学会了一些解决问题的方法,又逐步形成实事求是的科学态度和精神。2在探究中渗透“数形结合”的思想数形结合是小学数学中常用的、重要的一种数学思想方法。数形结合思想的实质即通过数形之间的相互转化,把抽象的数量关系,通过形象化的方法转化为适当的图形,从图形的结构直观地发现数量之间存在的内在联系,解决
5、数量关系的数学问题,这是数形结合思想。本册的“数学广角植树问题”把从直观图形支持下得到的模型应用到现实生活中,沟通图形、表格及具体数量之间的联系,强化对题意的理解。教师可以组织学生在课堂上“模拟植树”。用 “_”代表一段路,用“”代表一棵树,画“”就表示种了一棵树。关于在20米长的路可以栽多少棵树的问题,让学生自己动手画一画。学生根据图示,很容易发现规律。再从个别的、简单的几个例子出发,逐步过渡到复杂的、更一般的情境中,是数学中常用的推理方法。这个过程中,学生借助数形结合将文字信息与学习基础结合起来,使得学习得以继续,使得学生思维发展有了基础,也使得数学学习的思想方法真正得以渗透。因此,数形结
6、合能不失时机地为学生提供恰当的形象材料,可以将抽象的数量关系具体化,把无形的解题思路形象化。3在抽象中明晰“一一对应”思想本册“数学广角植树问题”的教学,通常有两种教学思路:一种思路是通过教材主题图中得三组实例归纳出规律,利用画图、小棒或圆片的排列来验证规律,进而结合生活实际应用规律。这种教学逻辑性强,规律揭示很顺畅,但是从教学效果看,学生虽然能够“熟记”规律,却不能灵活解决诸如“封闭、不封闭”“两端都栽、只栽一端、两端都不栽”这类问题,更不能用数学观点统领“间隔排列”的现象。另一种思路是在深入钻研教材的基础上,真正把握“间隔排列”的实质:两种物体间隔排列,这两种物体的排列一一对应。对应,是间
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学广角植树问题 数学 广角 植树 问题 解读
限制150内