几种常见的基因测序技术的优缺点及应用(共5页).docx
《几种常见的基因测序技术的优缺点及应用(共5页).docx》由会员分享,可在线阅读,更多相关《几种常见的基因测序技术的优缺点及应用(共5页).docx(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上随着人类基因组计划的完成,人类对自身遗传信息的了解和掌握有了前所未有的进步。与此同时,分子水平的基因检测技术平台不断发展和完善,使得基因检测技术得到了迅猛发展,基因检测效率不断提高。从最初第一代以 Sanger 测序为代表的直接检测技术和以连锁分析为代表的间接测序技术,到 2005 年,以 Illumina 公司的 Solexa技术和 ABI 公司的 SOLiD 技术为标志的新一代测 序 (next-generation sequencing,NGS) 的 相 继 出现,测序效率明显提升,时间明显缩短,费用明显降低,基因检测手段有了革命性的变化。其技术正向着大规模、工
2、业化的方向发展,极大地提高了基因检测的检出率,并扩展了疾病在基因水平的研究范围。2009 年 3 月,约翰霍普金斯大学的研究人员在Science杂志上发表了通过 NGS外显子测序技术,发现了一个新的遗传性胰腺癌的致病基因 PALB2,标志着 NGS 测序技术成功应用于致病基因的鉴定研究。同年,Nature发表了采用 NGS 技术发现罕见弗里曼谢尔登综合征MYH3 致病基因突变和Nat Genet发表了遗传疾病米勒综合征致病基因。此后,通过 NGS 技术,与遗传相关的致病基因不断被发现,NGS 技术已成为里程碑式的进步。2010 年,Science杂志将这一技术评选为当年“十大科学进展”。近两年
3、,基因检测成为临床诊断和科学研究的热点,得到了突飞猛进和日新月异的发展,越来越多的临床和科研成果不断涌现出来。同时,基因检测已经从单一的遗传疾病专业范畴扩展到复杂疾病和个体化应用更加广阔的领域,其临床检测范围包括高危疾病的新生儿筛查、遗传疾病的诊断和基因携带的检测以及基因药物检测用于指导个体化用药剂量、选择和药物反应等诸多方面的研究。目前,基因检测在临床诊断和医学研究的应用正越来越受到医生的普遍重视和引起研究人员的极大的兴趣。本文介绍了几种 DNA 水平基因检测常见的方法,比较其优缺点和在临床诊断和科学研究中的应用,对指导研究生和临床医生课外学习,推进临床科研工作和提升科研教学水平有着指导意义
4、。1、第一代测序1.1 Sanger 测序采用的是直接测序法。1977年,Frederick Sanger 等发明了双脱氧链末端终止法,这一技术随后成为最为常用的基因测序技术。2001 年,Allan Maxam 和 Walter Gibert 发 明了 Sanger 测序法,并在此后的 10 年里成为基因检测的金标准。其基本原理即双脱氧核苷三磷酸 (dideoxyribonucleoside triphosphate,ddNTP) 缺乏PCR 延伸所需的 3-OH,因此每当 DNA 链加入分子 ddNTP,延伸便终止。每一次 DNA 测序是由 4个独立的反应组成,将模板、引物和 4 种含有不
5、同的放射性同位素标记的核苷酸的 ddNTP 分别与DNA 聚合酶混合形成长短不一的片段,大量起始点相同、终止点不同的 DNA 片段存在于反应体系中,具有单个碱基差别的 DNA 序列可以被聚丙烯酰胺变性凝胶电泳分离出来,得到放射性同位素自显影条带。依据电泳条带读取 DNA 双链的碱基序列。人类基因组的测序正是基于该技术完成的。Sanger 测序这种直接测序方法具有高度的准确性和简单、快捷等特点。目前,依然对于一些临床上小样本遗传疾病基因的鉴定具有很高的实用价值。例如,临床上采用 Sanger 直接测序 FGFR 2 基因证实单基因 Apert 综合征和直接测序 TCOF1 基因可以检出多达 90
6、% 的与 Treacher Collins 综合征相关的突变。值得注意的是,Sanger 测序是针对已知致病基因的突变位点设计引物,进行 PCR 直接扩增测序。单个突变点的扩增包括该位点在内的外显子片段即可,不必将该点所在基因的全部外显子都扩增。因此,应明确定位要扩增的位点所在的基因外显子和该点的具体位置,设计包括该点在内的上下游 150 200 bp 的外显子片段引物。此外,尽管有NGS 的出现,但 Sanger 测序对于有致病基因位点明确并且数量有限的单基因遗传疾病的致病基因的检测是非常经济和高效的。到目前为止,Sanger 测序仍然是作为基因检测的金标准,也是 NGS 基因检测后进行家系
7、内和正常对照组验证的主要手段。值得注意的是,Sanger 测序目的是寻找与疾病有关的特定的基因突变。对于没有明确候选基因或候选基因数量较多的大样本病例筛查是难以完成的,此类测序研究还要依靠具有高通量测序能力的 NGS。虽然 Sanger 测序具有高度的分析准确性,但其准确性还取决于测序仪器以及测序条件的设定。另外,Sanger 测序不能检测出大片段缺失或拷贝数变异等基因突变的类型,因此对于一些与此相关的遗传性疾病还不能做出基因学诊断。1.2 连锁分析采用的是间接测序法。在 NGS 出现之前,国际通用的疾病基因定位克隆策略是建立在大规模全基因扫描和连锁分析基础上的位置候选基因克隆。人类的染色体成
8、对出现,一条来自父亲,一条来自母亲,每一对染色体在同样的位置上拥有相同的基因,但是其序列并不完全相同,被称为父系和母系等位基因。遗传标记是指在人群中表现出多态现象的 DNA 序列,可追踪染色体、染色体某一节段或某个基因座在家系中传递的任何一种遗传特性。它存在于每一个人,但大小和序列有差别,具有可遗传性和可识别性。目前采用第二代遗传标记,即重复序列多态性,特别是短串联重复序列,又称微卫星标记。连锁分析是以连锁这种遗传现象为基础,研究致病基因与遗传性标记之间关系的方法。如果控制某一表型性状的基因附近存在遗传标记,那么利用某个遗传标记与某个拟定位的基因之间是否存在连锁关系,以及连锁的紧密程度就能将该
9、基因定位到染色体某一位置上。1986 年 Morton 等提出优势对数记分法 (log odds score method,LOD),主要检测两基因以某一重组率连锁时的似然性。LOD 值为正,支持连锁 ;LOD 值为负,则否定连锁。通过计算家系中的微卫星标记与致病位点之间的 LOD 值,可以初步估算二者间的遗传距离及连锁程度,从而确定该基因在染色体上的粗略位置。然后利用该区域的染色体基因图谱,分析定位区域内所有基因的功能与表达,选择合适的候选基因进行突变检测,最终将致病基因定位或克隆。然而,采用连锁分析进行基因检测存在很大的局限性。不但所需遗传样本量较大,一般要求提供三代及以上遗传家系患者血样
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 常见 基因 技术 优缺点 应用
限制150内