初二数学期末专题复习之几何部分——菱形(学生版)(共19页).docx
《初二数学期末专题复习之几何部分——菱形(学生版)(共19页).docx》由会员分享,可在线阅读,更多相关《初二数学期末专题复习之几何部分——菱形(学生版)(共19页).docx(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上初二数学期末专题复习之菱形一、知识点梳理(一)四边形的相关概念1、四边形在同一平面内,由不在同一直线上的四条线段首尾顺次相接的图形叫做四边形。2、凸四边形把四边形的任一边向两方延长,如果其他个边都在延长所得直线的同一旁,这样的四边形叫做凸四边形。3、对角线在四边形中,连接不相邻两个顶点的线段叫做四边形的对角线。4、四边形的不稳定性三角形的三边如果确定后,它的形状、大小就确定了,这是三角形的稳定性。但是四边形的四边确定后,它的形状不能确定,这就是四边形所具有的不稳定性,它在生产、生活方面有着广泛的应用。5、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和
2、等于360。四边形的外角和定理:四边形的外角和等于360。推论:多边形的内角和定理:n边形的内角和等于180; 多边形的外角和定理:任意多边形的外角和等于360。6、多边形的对角线条数的计算公式设多边形的边数为n,则多边形的对角线条数为。(二)平行四边形 1、平行四边形的概念两组对边分别平行的四边形叫做平行四边形。平行四边形用符号“ABCD”表示,如平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”。2、平行四边形的性质(1)平行四边形的邻角互补,对角相等。(2)平行四边形的对边平行且相等。推论:夹在两条平行线间的平行线段相等。(3)平行四边形的对角线互相平分。(4)若一直线过平行
3、四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积。 (5)中心对称图形,对称中心是对角线的交点。3、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形(2)定理1:两组对角分别相等的四边形是平行四边形(3)定理2:两组对边分别相等的四边形是平行四边形(4)定理3:对角线互相平分的四边形是平行四边形(5)定理4:一组对边平行且相等的四边形是平行四边形4、两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。平行线间的距离处处相等。(4)两条平行线之间的距离两条平行线中,一条直线上
4、的任意一点到另一条直线的距离,叫做这两条平行线的距离平行线间的距离处处相等注意:(1)距离是指垂线段的长度,是正值5、平行四边形的面积:S平行四边形=底边长高=ah(三)矩形 1、矩形的概念有一个角是直角的平行四边形叫做矩形。2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形注:用矩形的性质可以证明线段相等或倍分、直线平行、角相等等 3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形结论:直角三角形斜边上的中线等于斜边的一半。注意:用定义判
5、定一个四边形是矩形必须同时满足两个条件:一是有一个角是直角;二是平行四边形也就是说有一角是直角的四边形,不一定是矩形,必须加上平行四边形这个条件,它才是矩形用定理2证明一个四边形是矩形,也必须满足两个条件:一是对角线相等;二是平行四边形也就说明:两条对角线相等的四边形不一定是矩形,必须加上平行四边形这个条件,它才是矩形4、矩形的面积:S矩形=长宽=ab(四)菱形 1、菱形的概念有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形3、菱形的判定(1)定义:有一组邻边相等的
6、平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形注意:对角线互相垂直的四边形不一定是菱形,必须加上平行四边形这个条件它才是菱形利用菱形的性质及判定可以证明线段相等及倍分、角相等及倍分、直线平行、垂直,以及证明一个四边形是菱形和有关计算4、菱形的面积S菱形=底边长高=两条对角线乘积的一半菱形的计算转化为_三角形 (五)正方形 1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。矩形、菱形、正方形都是特殊的平行四边形,它们的包含关系如图:2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四
7、条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。 3、正方形的判定判定一: 一组邻边相等的矩形是正方形;判定二:一个角是直角的菱形是正方形判定三:有一组邻边相等并且有一个角是直角的平行四边形是正方形;判定四:即是矩形又是菱形的四边形是正方形。(1)判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。先证它是菱形,再证
8、有一个角是直角。(2)判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形;再证明它是菱形(或矩形);最后证明它是矩形(或菱形)4、正方形的面积设正方形边长为a,对角线长为bS正方形=(六)梯形 1、梯形的相关概念一组对边平行而另一组对边不平行的四边形叫做梯形。梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。梯形中不平行的两边叫做梯形的腰。梯形的两底的距离叫做梯形的高。两腰相等的梯形叫做等腰梯形。一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分类如下: 一般梯形梯形 直角梯形 特殊梯形 等腰梯形2、梯形的判定(1)定义:一组对边平行而另一组对边不平行的四边形是梯形
9、。(2)一组对边平行且不相等的四边形是梯形。3、等腰梯形的性质(1)等腰梯形的两腰相等,两底平行。(3)等腰梯形的对角线相等。(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。4、等腰梯形的判定(1)定义:两腰相等的梯形是等腰梯形(2)定理:在同一底上的两个角相等的梯形是等腰梯形(3)对角线相等的梯形是等腰梯形。5、梯形的面积(1)(上底+下底)高 (2) 梯形中位线高(3)一腰中点到对腰的距离乘以此对腰的长=(如图)(4)如右图(现记住结论就行了)(5)梯形中有关图形的面积:; 6、梯形中位线定理梯形中位线平行于两底,并且等于两底和的一半。7、解决梯形问题的常用方法(如下图所
10、示):梯形的常见辅助线的添加方法:作高、平移腰、延腰、平移对角线、等积变化(当然不要忘了根据条件灵活添加辅助线)。通过添加辅助线,把梯形转化成平行四边形和三角形 “作高”:使两腰在两个直角三角形中“移对角线”:使两条对角线在同一个三角形中“廷腰”:构造具有公共角的两个三角形“等积变形”:连接梯形上底一端点和另一腰中点,并延长交下底的延长线于一点,构成三角形综上,解决梯形问题的基本思路: 梯形问题三角形或平行四边形问题,这种思路常通过平移或旋转来实现 (七)各个四边形之间的关系(1)知识框架 8、中心对称图形(2)几种特殊四边形的性质边角对角线平行四边形对边平行且相等对角相等两条对角线互相平分矩
11、形对边平行且相等四个角都是直角两条对角线互相平分且相等菱形对边平行四边相等对角相等两条对角线互相垂直平分,每条对角线平分一组对角正方形对边平行四边相等四个角都是直角两条对角线互相垂直平分且相等,每条对角线平分一组对角(3)几种特殊四边形的常用判定方法平行四边形(1)两组对边分别平行;(2)两组对边分别相等;(3)一组对边平行且相等;(4)两条对角线互相平分;(5)两组对角分别相等。矩形(1)有三个是直角;(2)是平行四边形且有一个角是直角;(3)是平行四边形且两条对角线相等。菱形(1)四条边都相等;(2)是平行四边形且有一组邻边相等;(3)是平行四边形且两条对角线互相垂直。正方形(1)是矩形,
12、且有一组邻边相等;(2)是菱形,且有一个角是直角。 (八)中心对称图形(1)把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称(中心对称); (2)把一个图形绕它的某一个点旋转180,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。 性质: (1)关于中心对称的两个图形是全等形; (2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分; (3)如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。 注: (1)以下图形是中心对称图形:直线、线段、平行四边形、矩形、菱形、正方形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 数学 期末 专题 复习 几何 部分 菱形 学生 19
限制150内