经典高中平面向量及应用知识点与练习(共7页).doc
《经典高中平面向量及应用知识点与练习(共7页).doc》由会员分享,可在线阅读,更多相关《经典高中平面向量及应用知识点与练习(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高考平面向量知识点总结16、向量:既有大小,又有方向的量 数量:只有大小,没有方向的量有向线段的三要素:起点、方向、长度 零向量:长度为的向量单位向量:长度等于个单位的向量平行向量(共线向量):方向相同或相反的非零向量零向量与任一向量平行相等向量:长度相等且方向相同的向量17、向量加法运算:三角形法则的特点:首尾相连平行四边形法则的特点:共起点三角形不等式: 运算性质:交换律:;结合律:;坐标运算:设,则18、向量减法运算:三角形法则的特点:共起点,连终点,方向指向被减向量坐标运算:设,则设、两点的坐标分别为,则19、向量数乘运算:实数与向量的积是一个向量的运算叫做向
2、量的数乘,记作;当时,的方向与的方向相同;当时,的方向与的方向相反;当时,运算律:;坐标运算:设,则20、向量共线定理:向量与共线,当且仅当有唯一一个实数,使设,其中,则当且仅当时,向量、共线21、平面向量基本定理:如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使(不共线的向量、作为这一平面内所有向量的一组基底)22、分点坐标公式:设点是线段上的一点,、的坐标分别是,当时,点的坐标是(当23、平面向量的数量积:零向量与任一向量的数量积为性质:设和都是非零向量,则当与同向时,;当与反向时,;或运算律:;坐标运算:设两个非零向量,则若,则,或 设,则设、都是
3、非零向量,是与的夹角,则平面向量及应用ABCD1、如图,在平行四边形ABCD中,下列结论中错误的是 ()(A); (B);(C); (D)2、若与都是非零向量,则“”是“”的( )(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件3、已知三点,其中为常数.若,则与的夹角为( )(A) (B)或 (C) (D)或4、已知向量,则的最大值为_5、设向量,满足,若=1,则+的值是.6、设函数,其中向量,。()、求函数的最大值和最小正周期;()、将函数的图像按向量平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的。【例1】出下列命题:若,则; 若A、B
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 经典 高中 平面 向量 应用 知识点 练习
限制150内