开关电源(buck)课设报告(共28页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《开关电源(buck)课设报告(共28页).doc》由会员分享,可在线阅读,更多相关《开关电源(buck)课设报告(共28页).doc(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上目 录摘 要本次设计的buck降压电路是基于TL494作为控制核心器件,由于开关管采用的是P沟道的MOSFET开关管,所以驱动要采用低电平驱动的方式,考虑到采用低电平驱动的方式需要在单独使用一路辅助电源,来为开关管的驱动电路供电,在实际中就需要使用两路相互隔离的电源来进行供电,所以在本电路中采用8050和8550三极管作为推挽驱动电路实现驱动电平的转换作用,同时增大了驱动电路的功率,使得的开关管能正常稳定的工作,避免了使用两路独立的电源为电路进行供电;电路中采用电压闭环控制,实现了输出电压的恒定作用;采用模拟PI调节器实现对电路的快速调节作用,使系统稳定工作;TL49
2、4采用RC振荡电路来产生锯齿波来作为驱动信号的载波,控制开关管的开关频率。关键字:开关管 推挽电路 RC振荡电路 开关频率AbstractThe buck step-down circuit design is based on the TL494 as the control device,Since the switch uses a P-channel MOSFET switch,So the drive to adopt low drive way,Considering the way the use of low drive in use requires a separate a
3、uxiliary power all the way,to power the drive circuit switching tubes,In practice, we need to use two isolated power supply to power,So using 8050 and 8550 as a push-pull transistor drive circuits drive level of conversion in this circuit,While increasing the power driver circuit,So that the switch
4、can be normal and stable work,Avoid the use of two separate power supply for the circuit;Circuit voltage closed-loop control,Action to achieve a constant output voltage;PI analog regulator circuit for fast regulation of that system stability;TL494 RC oscillator circuit to generate a sawtooth wave as
5、 the carrier drive signal, control the switching frequency of the switching tube.KeyWord: Switch Push-pull circuit RC oscillation circuit Switching frequency1 方案设计与论证1.1 总体方案的设计与论证方案一:采用低压线性稳压管(LDO)来设计电路。其优点是输出波形稳定,噪音小,所以外部电路比较简单。不足之处在于输入和输出电压的差值不能太大,效率较低,其负载电流相对较小。方案二:采用BUCK降压电路。该电路是负载电流大,效率高,发热小。由
6、于是通过开关管的开通和关断来实现能量的转换,所以纹波和噪音较大,需要较多额电容滤波。但考虑本次设计的需求,所以选择该方案。综上所述,故选择BUCK降压电路。1.2 开关管的选择方案一:采用绝缘栅双极晶体管(IGBT)。IGBT的功率容量大,但是开关频率较低,同时在关断时存在拖尾电流,需要加一个负电压让IGBT可靠的关断,对驱动电路要求较高。方案二:采用电力MOSFET。电力MOSFET是用栅极电压来控制漏极电流,因此所需驱动功率小、驱动电路简单;又由于是靠多数载流子导电,没有少数载流子导电所需的存储时间,是目前开关速度最高的电力电子器件,而在本电路中功率不是很大。综上所述,故选择电力MOSFE
7、T器件。1.3 模拟控制芯片的选择方案一:采用UC3842模拟控制芯片。UC3842是采用峰值电流模式控制的集成PWM控制器,专们用于构成正激型和反激型等开关电源的控制电路。驱动电路的结构为图腾柱结构的跟随电路,其输出峰值电流可达1000mA,可以直接驱动主电路的开关器件,但是在芯片欠压保护后再次启动的电压为16V,在本设计中启动电压较高,故不选择该芯片。方案二:采用TL494模拟控制芯片。TL494采用固定频率的PWM波的控制方式可以根据需要选择输出最大占空比和输出的频率,同时也可以根据需要调节死区时间的大小,驱动输出端也可以采用单端模式或者推拉模式,电路的启动电压为7V,最大工作电压为40
8、V,具有较宽的工作电压范围。考虑到实际情况所以在本设计中采用TL494。综上所述,故选择TL494作为模拟控制芯片。2 系统设计2.1 系统总体组成框图系统总体组成框图如图2-1所示。该系统中由BUCK主电路、反馈采样电路、控制电路和驱动电路组成。从而构成了一个电压闭环控制系统。图2-1 系统总体框图2.2 电路原理图总体电路原理图如图2-2所示。图2-2 电路原理图2.3推挽式放大器一种功率放大器。由一对参数相近的晶体管,交替工作在信号的正、负两个半周期成一推一挽形式的功率放大器。通常工作在乙类状态,两管集电极电流交替出现并合成在负载上,输出功率和效率大于单管功率放大器。在功率放大器电路中大
9、量采用推挽放大器电路,这种电路中用两只三极管构成一级放大器电路,两只三极管分别放大输入信号的正半周和负半周,即用一只三极管放大信号的正半周,用另一只三极管放大信号的负半周,两只三极管输出的半周信号在放大器负载上合并后得到一个完整周期的输出信号。 推挽放大器电路中,一只三极管工作在导通、放大状态时,另一只三极管处于截止状态,当输入信号变化到另一个半周后,原先导通、放大的三极管进入截止,而原先截止的三极管进入导通、放大状态,两只三极管在不断地交替导通放大和截止变化,所以称为推挽放大器。 图2-3推挽放大电路2.4 BUCK电路工作原理图2-4. BUCK电路图降压斩波电路(Buck Chopper
10、)的原理图如上所示。该电路使用MOS管作为开关。在上图中,为在V关断时给负载中的电感电流提供通道,设置了续流二极管VD。斩波电路的典型用途之一是拖动直流电动机,也可带蓄电池负载,两种情况下负载中均会出现反电动势,如图中Em所示。若负载中无反电动势时,只需令Em=0。电路的工作波形如下所示:图2-5. 电流连续时波形图由图2-5中的V的栅射电压 波形可知,在t=0时刻驱动V导通,电源E向负载供电,负载电压 ,负载电流 按指数曲线上升。当 时刻,控制V关断,负载电流经二极管VD续流,负载电压 近似为零,负载电流呈指数曲线下降。为了使负载电流连续且脉动小,通常串接L值很大的电感。至一个周期T结束,再
11、驱动V导通,重复上一周期的过程。当电路工作与稳态时,负载电流在一个周期的初值和终值相等。负载电压的平均值为 ;式中, 为V处于通态的时间; 为V处于断态的时间;T为开关周期; 为导通占空比。由此式知,输出到负载的电压平均值 最大为E,若减小占空比,则 随之减小。因此将该电路称为降压斩波电路。负载电流的平均值为 ,若负载中的L值较小,则在V关断后,到了 时刻,如图2-6所示,负载电流已衰减至零,会出现负载电流断续的情况。 由波形可见,负载电压 平均值会被抬高,一般不希望出现电流断续的情况。根据对输出电压平均值进行调制的方式不同,斩波电路可有三种控制方式:保持开关周期T不变,调节开关导通时间 ,称
12、为脉冲宽度调制(PWM方式)。保持开关导通时间 不变,改变开关周期T,称为频率调制。 和T都可调,使占空比改变,称为混合型。本次设计电路采用PWM方式控制MOSFET的通断。图2-6. 电流断续时波形以上的电压电流关系还可以从能量传递关系简单地推得。由于L为无穷大,故负载电流维持为 不变。电源只在V处于通态时提供能量,为 。从负载看,在整个周期T中负载一直在消耗能量,消耗的能量为 。一个周期中,忽略电路中的损耗,则电源提供的能量与负载消耗的能量相等,即:则:与上述结论一致。在上述情况中,均假设L值为无穷大,且负载电流平直。在这种情况下,假设电源电流平均值为 ,则有:其值小于等于负载电流 ,由上
13、式得: 即输出功率等于输入功率,可将降压斩波器看作直流降压变压器。2.5双端驱动集成电路TL4942.5.1 TL494简介TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。TL494能产生PWM,能调整频率和脉宽,还有一路基准电压,这些都满足DC-DC的条件,采用不同拓扑,得到升压和降压,如图2-7所示:图2-7 TL494外形图TL494其他主要特点如下:(1) 集成了全部的脉宽调制电路。(2) 片内置线性锯齿波振荡器,外置振荡元件仅两个(一个
14、电阻和一个电容)。(3)内置误差放大器。(4)内止5V参考基准电压源。(5)可调整死区时间。(6)内置功率晶体管可提供500mA的驱动能力。(7)推或拉两种输出方式。2.5.2 TL494工作原理TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的电阻RT和电容CT进行调节,输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。功率输出管Q1和Q2受控于或非门。当双稳触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号期间才会被选通。当控制信号增大,输出脉冲的宽度将减小。控制信号由集成电路外部输入,一路送至死区时间
15、比较器,一路送往误差放大器的输入端。死区时间比较器具有120mV的输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%,当输出端接地,最大输出占空比为96%,而输出端接参考电平时,占空比为48%。当把死区时间控制输入端接上固定的电压(范围在03.3V之间)即能在输出脉冲上产生附加的死区时间。 脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:当反馈电压从0.5V变化到3.5时,输出的脉冲宽度从被死区确定的最大导通百分比时间中下降到零。两个误差放大器具有从-0.3V到(Vcc-2.0)的共模输入范围。2.5.3 TL494内部电路图2-8 TL494内部电路框图TL494是一种电
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 开关电源 buck 报告 28
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内