曲线运动-专题重点讲义资料(共22页).doc
《曲线运动-专题重点讲义资料(共22页).doc》由会员分享,可在线阅读,更多相关《曲线运动-专题重点讲义资料(共22页).doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上曲线运动 专题一、 曲线运动的条件和性质质点做曲线运动的条件:从力的角度看,物体所受合外力与速度方向不在一条直线上;从运动的角度看:物体加速度的方向与速度方向不在一条直线上。曲线运动的特点1、受力特点物体所受合外力与速度方向不在一条直线上,且指向轨道内侧2、运动学特点曲线运动一定是变速运动,因为其速度方向一定在变化曲线运动可以是加速度恒定的匀变速运动,也可以是加速度变化的非匀变速运动3、曲线运动的轨迹特点向受力的一侧偏,且与初速度方向相切曲线运动的轨迹不会出现急折,只能平滑变化轨迹总在力与速度的夹角中4、曲线运动的合外力方向与速度方向的关系做曲线运动的物体,其轨迹向合
2、外力所指的一方弯曲,或合外力指向轨迹“凹”侧,若已知物体的运动轨迹可判断出合外力的大致方向若合外力为变力,则为变加速运动;若合外力为恒力,则为匀变速运动;若合外力为恒力且与初速度方向不在一条直线上则物体做匀变速曲线运动;若合外力方向与速度方向夹角为q,则当q为锐角时,物体做曲线运动的速率将变大; 当q为钝角时,物体做曲线运动的速率将变小; 当q始终为直角时,则该力只改变速度的方向而不改变速度的大小练习1:关于物体做曲线运动的条件,下述说法正确的是()A物体在恒力作用下不可能做曲线运动 B物体在变力作用下一定做曲线运动C合力的方向与物体速度的方向既不相同、也不相反时,物体一定做曲线运动D做曲线运
3、动的物体所受到的力的方向一定是变化的练习2:物体受到几个恒定外力的作用而做匀速直线运动,如果撤掉其中一个力,保持其他力不变,它可能做 ( )匀速直线运动 匀加速直线运动 匀减速直线运动 曲线运动正确的说法是A B C D练习3:下列关于曲线运动的说法中正确的是( ) A可以是匀速率运动 B 一定是变速运动 C可以是匀变速运动 D加速度可能恒为零练习4:某质点做曲线运动时( )A在某一点的速度方向是该点曲线的切线方向B在任意时间内位移的大小总是大于路程C在任意时刻质点受到的合外力不可能为零D速度的方向与合外力的方向必不在一条直线上【答案】1.C,2.C,3.ABC,4.ACD二、 运动的合成与分
4、解专题运动的合成与分解1、分运动与合运动 一个物体同时参与两种运动时,这两种运动是分运动,而物体相对地面的实际运动都是合运动。实际运动的方向就是合运动的方向。2、合运动与分运动的特征 (1)运动的独立性:一个物体同时参与两个(或多个)运动,其中的任何一个运动并不会受其他分运动的干扰,而保持其运动性质不变,这就是运动的独立性原理。虽然各分运动互不干扰,但是它们共同决定合运动的性质和轨迹。 (2)运动的等时性:各个分运动与合运动总是同时开始,同时结束,经历时间相等(不同时的运动不能合成)。 (3)运动的等效性:各分运动叠加起来与合运动有相同的效果。 (4)运动的“同一性”:各分运动与合运动,是指同
5、一物体参与的分运动和实际发生的运动,不是几个不同物体发生的不同运动。3、两个分运动合成的分类 (1)两个同一直线上的分运动的合成 两个分运动在同一直线上,无论方向是同向的还是反向的,无论是匀速的还是变速的,其合运动一定是直线运动。 (2)两个互成角度的分运动的合成 两个匀速直线运动的合运动一定是匀速直线运动。当同向时,;当反向时,;当互成角度时,由平行四边形定则求解。两个初速度均为零的匀加速直线运动的合运动一定是匀加速直线运动,并且合运动的初速度为零,由平行四边形定则求解。一个匀速直线运动和另一个匀变速直线运动的合运动一定是匀变速曲线运动,合运动的加速度即为分运动的加速度。两个匀变速直线运动的
6、合运动,其性质由合加速度方向与合初速度方向的关系决定。当合加速度与合初速度共线时,合运动为匀变速直线运动;当合加速度与合初速度斜交(互成角度)时,合运动为匀变速曲线运动。练习1:一物体运动规律是,则下列说法中正确的是( ) A. 物体在x轴和y轴方向上都是初速度为零的匀加速直线运动 B. 物体的合运动是初速度为零,加速度为的匀加速直线运动 C. 物体的合运动是初速度为零,加速度为的匀加速直线运动 D. 物体的合运动是加速度为的曲线运动练习2:A、B两物体通过一根跨过定滑轮的轻绳相连放在水平面上,现物体A以的速度向右匀速运动,当绳被拉成与水平面夹角分别是时,如图5所示。物体B的运动速度为(绳始终
7、有拉力)( )图5 A. B. C. D. 答案:1:AC,2:D小船过河模型小船渡河的问题,可以分解为它同时参与的两个分运动,一是小船相对水的运动(设水不流时船的运动,即在静水中的运动),一是随水流的运动(即水冲船的运动,等于水流的运动),船的实际运动为合运动.两种情况:船速大于水速;船速小于水速。两种极值:渡河最小位移;渡河最短时间。【例1】一条宽度为L的河,水流速度为,已知船在静水中速度为,那么:(1)怎样渡河时间最短?(2)若,怎样渡河位移最小?(3)若,怎样渡河位移最小,船漂下的距离最短?V船解析:(1)小船过河问题,可以把小船的渡河运动分解为它同时参与的两个运动,一是小船运动,一是
8、水流的运动,船的实际运动为合运动。如右图所示,船头与河岸垂直渡河,渡河时间最短:。V水V合此时,实际速度(合速度)实际位移(合位移)(2)如右图所示,渡河的最小位移即河的宽度。为使渡河位移等于L,必须使船的合速度v合的方向与河岸垂直,即使沿河岸方向的速度分量等于0。这时船头应指向河的上游,并与河岸成一定的角度,所以有,即。因为为锐角,所以只有在时,船头与河岸上游的夹角,船才有可能垂直河岸渡河,此时最短位移为河宽,即。实际速度(合速度),运动时间(3)若,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如右图所示,设船头v船与河岸成角。合速度v合与河岸成角。可以看出:角越大,船
9、漂下的距离x越短,那么,在什么条件下角最大呢?以v水的矢尖为圆心,v船为半径画圆,当v合与圆相切时,角最大,根据,船头与河岸的夹角应为,此时渡河的最短位移:渡河时间:,船沿河漂下的最短距离为:练习1:一艘小艇从河岸A处出发渡河,小艇保持与河岸垂直方向行驶,经过10min到达正对岸下游120m的C处,如图所示,如果小艇保持原来的速度逆水斜向上游与河岸成角方向行驶,则经过12.5min恰好到达正对岸的B处,求:河的宽度。练习2:船在静水中的航速为v1,水流的速度为v2。为使船行驶到河正对岸的码头,则v1相对v2的方向应为( )解析1:设河宽为d,河水流速为,船速为,船两次运动速度合成如图所示。依题
10、意有:由可得由得,故,河宽。解析2:C关联速度问题典型的“抽绳”问题:所谓“抽绳”问题,是指同一根绳的两端连着两个物体,其速度各不相同,常常是已知一个物体的速度和有关角度,求另一个速度。要顺利解决这类题型,需要搞清两个问题:(1)分解谁的问题哪个运动是合运动就分解哪个运动,物体实际经历的运动就是合运动。(2)如何分解的问题由于沿同一绳上的速度分量大小相同,所以可将合速度向沿绳方向作“投影”,将合速度分解成一个沿绳方向的速度和一个垂直于绳方向的速度,再根据已知条件进行相应计算。其实这也可以理解成“根据实际效果将合运动正交分解”的思路。1、如图所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的
11、定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v运动。当绳子与水平方向成角时,物体前进的瞬时速度是多大?解析:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v物是合速度,将v物按如图所示进行分解其中:v=v物cos,使绳子收缩v=v物sin,使绳子绕定滑轮上的A点转动所以v物=练习1:如图所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D。BC段水平,当以速度v0拉绳子自由端时,A 沿水平面前进,求:当跨过B的两段绳子夹角为时A的运动速度v解:应用合运动与分运动的关
12、系物体动水平的绳也动,在滑轮下侧的水平绳缩短速度和物体速度相同,设为v物。根据合运动的概念,绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动。也就是说“物体”的方向(更直接点是滑轮的方向)是合速度方向,与物体连接的BD绳上的速度只是一个分速度,所以上侧绳缩短的速度是v物cosa因此绳子上总的速度为v物+v物cosa=v0,得到v物=练习2:如图所示,A、B两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A车以速度v0向右匀速运动,当绳与水平面的夹角分别为和时,B车的速度是多少?解析:右边的绳子的速度等于A车沿着绳子方向的分速度,设绳子速度为v。将A车的速度分解为沿着绳子
13、的方向和垂直于绳子的方向,则v=vAcosb同理,将B车的速度分解为沿着绳子方向和垂直于绳子的方向,则v=vBcosa由于定滑轮上绳子的速度都是相同的,得到例题2:如图所示,均匀直杆上连着两个小球A、B,不计一切摩擦.当杆滑到如图位置时,B球水平速度为vB,加速度为aB,杆与竖直夹角为,求此时A球速度和加速度大小解析:分别对小球A和B的速度进行分解,设杆上的速度为v则对A球速度分解,分解为沿着杆方向和垂直于杆方向的两个速度。v=vAcosa对B球进行速度分解,得到v=vBsina联立得到vA=vBtana加速度也是同样的思路,得到aA=aBtana三、 平抛运动专题1.平抛运动的规律平抛运动可
14、以看成是水平方向的匀速直线和竖直方向的自由落体运动的合运动以抛出点为原点,取水平方向为x轴,正方向与初速度的方向相同,竖直方向为y轴,正方向向下,物体在任一时刻t位置坐标P(x,y),位移s、速度(如下图所示)的关系为:(1)速度公式水平分速度: , 竖直分速度: t时刻平抛物体的速度大小和方向(2)位移公式(位置坐标)水平分位移: 竖直分位移: t时间内合位移的大小和方向:s= ; = 由于,的反向延长线与x轴的交点为水平位移的中点几个重要问题(1)平抛物体运动的轨迹:抛物线。平抛运动的轨迹方程为:可见,平抛物体运动的轨迹是一条抛物线。(2)一个有用的推论:平抛物体任意时刻瞬时速度方向的反向
15、延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。(3)因平抛运动在竖直方向是匀变速直线运动,所以适合于研究匀变速运动的公式,如s=aT2,等同样也适用于研究平抛运动竖直方向的运动特点,这一点在研究平抛物体运动的实验中用得较多。例题1.如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A和B两小球的运动时间之比为多少?解析:和都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法可以得到所以有同理则例题2某一平抛的部分轨迹如图4所示,已知,求。图4解析:A与B、B与C的水平
16、距离相等,且平抛运动的水平方向是匀速直线运动,可设A到B、B到C的时间为T,则又竖直方向是自由落体运动, 则代入已知量,联立可得2. 斜面上的平抛运动(1).物体从空中某点水平抛出落在斜面上例1将一个小球以速度v0水平抛出,要使小球能够垂直打到一个斜面上,斜面与水平方向的夹角为,那么,下列说法中正确的是( )A若保持水平速度v0不变,斜面与水平方向的夹角越大,小球的飞行时间越B若保持水平速度v0不变,斜面与水平方向的夹角越大,小球的飞行时间越短C若保持斜面倾角不变,水平速度v0越大,小球的飞行时间越长 D若保持斜面倾角不变,水平速度v0越大,小球的飞行时间越短v0 图1 vx v vy 解析
17、将小球垂直打到斜面上的速度v沿水平和竖直分解,如图1所示,由几何知识知,v和竖直方向的夹角也为,由平抛运动的规律得解得:由上式不难看出,若保持v0不变,越大,小球的飞行时间越短;若保持不变,v0越大,小球的飞行时间越长所以,本题答案应选BC(2)物体从斜面上某点水平抛出又落回斜面上图4 v0 A B x y 例2 如图4所示,从倾角为的斜面上A点,以水平速度v0抛出一个小球,不计空气阻力,它落到斜面上B点时所用的时间为( )A B C D解析 设小球从抛出至落到斜面上所用时间为t,其水平位移和竖直位移分别为x,y,如图4所示,由平抛运动的规律得 由几何关系知 由式得 所以,本题答案应选B3.平
18、抛运动的临界问题【例】如图所示,排球场总长为18m,设网的高度为2m,运动员站在离网3m远的线上正对网前竖直向上跳起把球垂直于网水平击出。(g10)(1)设击球点的高度为2.5m,问球被水平击出时的速度在什么范围内才能使球既不触网也不出界。(2)若击球点的高度小于某个值,那么无论球被水平击出时的速度多大,球不是触网就是出界,试求出此高度。【练习】如图所示,将一个小球从楼梯顶部以2m/s的水平速度抛出,已知所有台阶高均为h=0.2m,宽均为s=0.25m。问:小球从楼梯顶部被抛出后最先撞到哪一级台阶上?【解析】这个问题实际上是判断小球撞到每个台阶点的临界速度。然后判断2m/s在哪个临界速度范围内
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 曲线运动 专题 重点 讲义 资料 22
限制150内