最全余弦定理的10种证明方法(共5页).doc
《最全余弦定理的10种证明方法(共5页).doc》由会员分享,可在线阅读,更多相关《最全余弦定理的10种证明方法(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上(经典)最全余弦定理的10种证明方法王彦文 青铜峡一中一、余弦定理余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的积的两倍,即在中,已知,则有,.二、定理证明为了叙述的方便与统一,我们证明以下问题即可:在中,已知,及角,求证:.证法一:如图1,在中,由可得:即,.证法二:本方法要注意对进行讨论.(1)当是直角时,由知结论成立.(2)当是锐角时,如图2-1,过点作,交于点,则在中,. 从而,.在中,由勾股定理可得: 即,. 说明:图2-1中只对是锐角时符合,而还可以是直角或钝角.若是直角,图中的点就与点重合;若是钝角,图中的点就在的延长线上
2、.(3)当是钝角时,如图2-2,过点作,交延长线于点,则在中,. 从而,.在中,由勾股定理可得: 即,.综上(1),(2),(3)可知,均有成立.证法三:过点作,交于点,则在中,.在中,.由可得:整理可得.证法四:在中,由正弦定理可得.从而有,. 将带入,整理可得.将,平方相加可得.即,.证法五:建立平面直角坐标系(如图4),则由题意可得点,再由两点间距离公式可得.即,.证法六:在中,由正弦定理可得,.于是,即,结论成立.证法七:在中,由正弦定理可得,.于是, 由于,因此. 这,显然成立.即,结论成立.证法八:如图5,以点为圆心,以为半径作,直线与交于点,延长交于,延长交于.则由作图过程知,故.由相交弦定理可得:,即,整理可得:.证法九:如图6,过作,交的外接圆于,则,.分别过作的垂线,垂足分别为,则,故.由托勒密定理可得,即,.整理可得:.证法十:由图7-1和图7-2可得,整理可得:.余弦定理的证明方法还有很多,比如可以用物理方法证明、可以构造相似三角形证明、可以利用图形面积证明等.感兴趣的读者可以到图书馆或互联网中进行查询.专心-专注-专业
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 余弦 定理 10 证明 方法
限制150内