高中数学-函数的性质-单调性-奇偶性-最值(共23页).doc





《高中数学-函数的性质-单调性-奇偶性-最值(共23页).doc》由会员分享,可在线阅读,更多相关《高中数学-函数的性质-单调性-奇偶性-最值(共23页).doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 函数的单调性和奇偶性经典例题透析类型一、函数的单调性的证明1.证明函数上的单调性. 证明:在(0,+)上任取x1、x2(x1x2), 令x=x2-x10 则 x10,x20, 上式0,y=f(x2)-f(x1)0 上递减.总结升华:1证明函数单调性要求使用定义;2如何比较两个量的大小?(作差)3如何判断一个式子的符号?(对差适当变形)举一反三:【变式1】用定义证明函数上是减函数.思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径.证明:设x1,x2是区间上的任意实数,且x1x2,则 0x1x21 x1-x20,0x1x21 0x1x21 故,
2、即f(x1)-f(x2)0 x1x2时有f(x1)f(x2) 上是减函数.总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.类型二、求函数的单调区间2. 判断下列函数的单调区间; (1)y=x2-3|x|+2; (2)解:(1)由图象对称性,画出草图f(x)在上递减,在上递减,在上递增.(2) 图象为 f(x)在上递增.举一反三:【变式1】求下列函数的单调区间:(1)y=|x+1|; (2)(3).解:(1)画出函数图象, 函数的减区间为,函数的增区间为(-1,+);(2)定义域为, 其中u=2x-1为增函数,在
3、(-,0)与(0,+)为减函数, 则上为减函数;(3)定义域为(-,0)(0,+),单调增区间为:(-,0),单调减区间为(0,+).总结升华:1数形结合利用图象判断函数单调区间;2关于二次函数单调区间问题,单调性变化的点与对称轴相关.3复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化复合函数为增函数;内外层函数反向变化复合函数为减函数.类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值) 3. 已知函数f(x)在(0,+)上是减函数,比较f(a2-a+1)与的大小. 解: 又f(x)在(0,+)
4、上是减函数,则.4. 求下列函数值域: (1); 1)x5,10; 2)x(-3,-2)(-2,1);(2)y=x2-2x+3; 1)x-1,1; 2)x-2,2.思路点拨:(1)可应用函数的单调性;(2)数形结合.解:(1)2个单位,再上移2个单位得到,如图 1)f(x)在5,10上单增,; 2);(2)画出草图 1)yf(1),f(-1)即2,6; 2).举一反三:【变式1】已知函数.(1)判断函数f(x)的单调区间;(2)当x1,3时,求函数f(x)的值域.思路点拨:这个函数直接观察恐怕不容易看出它的单调区间,但对解析式稍作处理,即可得到我们相对熟悉的形式.,第二问即是利用单调性求函数值
5、域.解:(1)上单调递增,在上单调递增; (2)故函数f(x)在1,3上单调递增x=1时f(x)有最小值,f(1)=-2x=3时f(x)有最大值x1,3时f(x)的值域为.5. 已知二次函数f(x)=x2-(a-1)x+5在区间上是增函数,求:(1)实数a的取值范围;(2)f(2)的取值范围. 解:(1)对称轴是决定f(x)单调性的关键,联系图象可知只需; (2)f(2)=22-2(a-1)+5=-2a+11又a2,-2a-4f(2)=-2a+11-4+11=7.类型四、判断函数的奇偶性6. 判断下列函数的奇偶性: (1) (2)(3)f(x)=x2-4|x|+3 (4)f(x)=|x+3|-
6、|x-3| (5)(6) (7)思路点拨:根据函数的奇偶性的定义进行判断.解:(1)f(x)的定义域为,不关于原点对称,因此f(x)为非奇非偶函数;(2)x-10,f(x)定义域不关于原点对称,f(x)为非奇非偶函数;(3)对任意xR,都有-xR,且f(-x)=x2-4|x|+3=f(x),则f(x)=x2-4|x|+3为偶函数 ;(4)xR,f(-x)=|-x+3|-|-x-3|=|x-3|-|x+3|=-f(x),f(x)为奇函数;(5) ,f(x)为奇函数;(6)xR,f(x)=-x|x|+x f(-x)=-(-x)|-x|+(-x)=x|x|-x=-f(x),f(x)为奇函数;(7),
7、f(x)为奇函数.举一反三:【变式1】判断下列函数的奇偶性:(1); (2)f(x)=|x+1|-|x-1|; (3)f(x)=x2+x+1;(4).思路点拨:利用函数奇偶性的定义进行判断.解:(1);(2)f(-x)=|-x+1|-|-x-1|=-(|x+1|-|x-1|)=-f(x) f(x)为奇函数;(3)f(-x)=(-x)2+(-x)+1=x2-x+1 f(-x)-f(x)且f(-x)f(x) f(x)为非奇非偶函数;(4)任取x0则-x0,f(-x)=(-x)2+2(-x)-1=x2-2x-1=-(-x2+2x+1)=-f(x) 任取x0,则-x0 f(-x)=-(-x)2+2(-
8、x)+1=-x2-2x+1=-(x2+2x-1)=-f(x) x=0时,f(0)=-f(0) xR时,f(-x)=-f(x) f(x)为奇函数.举一反三:【变式2】已知f(x),g(x)均为奇函数,且定义域相同,求证:f(x)+g(x)为奇函数,f(x)g(x)为偶函数.证明:设F(x)=f(x)+g(x),G(x)=f(x)g(x)则 F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-f(x)+g(x)=-F(x) G(-x)=f(-x)g(-x)=-f(x)-g(x)=f(x)g(x)=G(x) f(x)+g(x)为奇函数,f(x)g(x)为偶函数.类型五、函数奇偶性的应用(求值
9、,求解析式,与单调性结合) 7.已知f(x)=x5+ax3-bx-8,且f(-2)=10,求f(2). 解:法一:f(-2)=(-2)5+(-2)3a-(-2)b-8=-32-8a+2b-8=-40-8a+2b=108a-2b=-50 f(2)=25+23a-2b-8=8a-2b+24=-50+24=-26法二:令g(x)=f(x)+8易证g(x)为奇函数g(-2)=-g(2) f(-2)+8=-f(2)-8f(2)=-f(-2)-16=-10-16=-26.8. f(x)是定义在R上的奇函数,且当x0时,f(x)=x2-x,求当x0时,f(x)的解析式,并画出函数图象. 解:奇函数图象关于原
10、点对称, x0时,-y=(-x)2-(-x)即y=-x2-x又f(0)=0,如图9. 设定义在-3,3上的偶函数f(x)在0,3上是单调递增,当f(a-1)f(a)时,求a的取值范围. 解:f(a-1)f(a) f(|a-1|)f(|a|)而|a-1|,|a|0,3.类型六、综合问题10.定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间的图象与f(x)的图象重合, 设ab0,给出下列不等式,其中成立的是_.f(b)-f(-a)g(a)-g(-b); f(b)-f(-a)g(a)-g(-b);f(a)-f(-b)g(b)-g(-a); f(a)-f(-b)g(b)-g(-a).答案:.1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 函数 性质 调性 奇偶性 23

限制150内