高中数学等差数列教案(二)(共5页).doc
《高中数学等差数列教案(二)(共5页).doc》由会员分享,可在线阅读,更多相关《高中数学等差数列教案(二)(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上课 题:3.3 等差数列的前n项和(二)教学目的:1.进一步熟练掌握等差数列的通项公式和前n项和公式.2.了解等差数列的一些性质,并会用它们解决一些相关问题.教学重点:熟练掌握等差数列的求和公式教学难点:灵活应用求和公式解决问题授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析: 本节是在集合与简易逻辑之后学习的,映射概念本身就属于集合的教学过程:一、复习引入:首先回忆一下上一节课所学主要内容:1.等差数列的前项和公式1: 2.等差数列的前项和公式2: 3.,当d0,是一个常数项为零的二次式4.对等差数列前项和的最值问题有两种方法:(1) 利用: 当0
2、,d0,前n项和有最大值可由0,且0,求得n的值当0,前n项和有最小值可由0,且0,求得n的值(2) 利用:由二次函数配方法求得最值时n的值 二、例题讲解 例1 .求集合M=m|m=2n1,nN*,且m60的元素个数及这些元素的和.解:由2n160,得n,又nN* 满足不等式n的正整数一共有30个.即 集合M中一共有30个元素,可列为:1,3,5,7,9,59,组成一个以=1, =59,n=30的等差数列. =,=900.答案:集合M中一共有30个元素,其和为900.例2.在小于100的正整数中共有多少个数能被3除余2,并求这些数的和分析:满足条件的数属于集合,M=m|m=3n+2,m100,
3、mN*解:分析题意可得满足条件的数属于集合,M=m|m=3n+2,m100,nN*由3n+2100,得n32,且mN*, n可取0,1,2,3,32.即 在小于100的正整数中共有33个数能被3除余2.把这些数从小到大排列出来就是:2,5,8,98.它们可组成一个以=2,d=3, =98,n=33的等差数列.由=,得=1650.答:在小于100的正整数中共有33个数能被3除余2,这些数的和是1650.例3已知数列是等差数列,是其前n项和,求证:,-,-成等差数列;设 ()成等差数列证明:设首项是,公差为d则 是以36d为公差的等差数列同理可得是以d为公差的等差数列.三、练习:1一个等差数列前4
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 等差数列 教案
限制150内