新北师大版数学七年级上册一元一次方程应用题专题(共9页).doc
《新北师大版数学七年级上册一元一次方程应用题专题(共9页).doc》由会员分享,可在线阅读,更多相关《新北师大版数学七年级上册一元一次方程应用题专题(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上新北师大版数学七年级上册一元一次方程专题复习一、 选择题: 1下面的等式中,是一元一次方程的为( )A3x2y0 B3m10 C2x Da2162下列结论中,正确的是( )A由5x13,可得x135 B由5 x3 x7,可得5 x3 x7 C由9 x4,可得x D由5 x82x,可得5 x2 x8 3下列方程中,解为x2的方程是( )A3xx3 Bx30 C2x6 D5x284解方程时,去分母得( )A4(x1)x3(5x1) Bx112x(5x1) C3(x1)12x4(5x1) D3(x1)x4(5x1)5若(y1)与32y互为相反数,则y等于( )A2 B2 C
2、 D6关于y的方程3y50与3y3k1的解完全相同,则k的值为( )A2 B C2 D7父亲现年32岁,儿子现年5岁,x年前,父亲的年龄是儿子年龄的10倍,则x应满足的方程是( )A32x5x B32x10(5x) C32x510 D32x5108小华在某月的月历中圈出几个数,算出这三个数的和是36,那么这个数阵的形式可能是( ) A B C D9某商品的售价比原售价降低了15%,现售价是34元,那么原来的售价是( )A28元 B32元 C36元 D40元10用72cm长的铁丝做一个长方形的教具,要使宽为15cm,那么长是( )A28.5cm B42cm C21cm D33.5cm二、填空题:
3、 11设某数为x,若它的3倍比这个数本身大2,则可列出方程_.12将方程3x75x3变形为3x5x37,这个变形过程叫做_.13当y_时,代数式与y5的值相等.14若与互为倒数,则x_.15.三个连续奇数的和是75,则这三个数分别是_.16.一件商品的成本是200元,提高30%后标价,然后打九折销售,则这件商品的利润为_元.17.若x3是关于x的方程3xa2x5的解,则a的值为_.18.单项式3ax1b4与9a2x1b4是同类项,则x_.19.一只轮船在A、B两码头间航行,从A到B顺流需4小时,已知A、B间的路程是80千米,水流速度是2千米/时,则从B返回A用_小时.三、解方程:(1)9-10
4、x=10-9x (2) 2(x+3)5(1x)=3(x1) (3) =+1 (4) (5) (6)(1)和、差、倍、分问题此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。例:把一些图书分给某班学生阅读,如果每人分3本,则 剩余20本;如果每人分4本,则还缺25本.问这个班有多少 学生?变式1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?变式2:某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,
5、且余30个座位.请问参加春游的师生共有多少人?(2)等积变形问题此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。“等积变形”是以形状改变而体积不变为前提。常用等量关系为: 形状面积变了,周长没变;原体积变形体积。例:要锻造一个半径为5cm,高为8cm的圆柱形毛坯,应截取截面半径为4cm的圆钢多长?变式1:直径为30 cm,高为50cm的圆柱形瓶里放满了饮料,现把饮料倒入底面直径为10cm 的圆柱形小杯,刚好倒满30杯,求小杯的高变式2:用一根长为10米的铁丝围成一个长方形,(1)使得长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?(2)使得长方形的长
6、比宽多0.8米,此时长方形的长、宽各为多少米?它所围成的长方形与(1)中所围长方形相比,面积有什么变化? (3)调配问题。从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。常见题型有:既有调入又有调出;只有调入没有调出,调入部分变化,其余不变;只有调出没有调入,调出部分变化,其余不变。例:甲、乙两个仓库要向A、B两地运送水泥,已知甲仓库可调100吨水泥乙仓库可调水泥80吨,A地需70吨水泥,B地需 110吨水泥,两仓库到A,B两地的路程和运费如下表 路程(千米) 运费(元/千米.吨) 甲仓库乙仓库 甲仓库乙仓库A地 20 25 12 12B地 25
7、20 10 8(1)设甲仓库运往A地水泥x 吨,试用x的一次式表示总运费W?(2)你能确定当甲、乙两仓库各运往A,B多少吨水泥时,总运费元? 变式1:甲仓库有存粮120吨,乙仓库有存粮食80吨,现从甲库调部分到乙库,若要求调运后甲库的存粮是乙库的 2/3 ,问应从甲库调多少吨粮食到乙库?变式2:某公司原有职员60名,其中女职员占20%,今年又有几位男职员辞职,公司又补招了3名女职员,女职员的比例提高到25%,问公司离开公司的男职员一共有几人?(4)行程问题。要掌握行程中的基本关系:路程速度时间。相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量
8、关系。甲走的路程+乙走的路程=全路程追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。 同时不同地:甲的时间=乙的时间 甲走的路程-乙走的路程=原来甲、乙相距的路程 同地不同时:甲的时间=乙的时间-时间差 甲的路程=乙的路程环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。船(飞机)航行问题:相对运动的合速度关系是:顺水(风)速度静水(无风)中速度水(风)流速度;逆水(风)速度静水(无风)中速度水(风)流速度。 车上(离)桥问题: 车上桥:指车头接触桥到车尾接触桥
9、的一段过程,所走路程为一个车长。 车离桥:指车头离开桥到车尾离开桥的一段路程。所走的路程为一个成长 车过桥:指车头接触桥到车尾离开桥的一段路程,所走路成为一个车长+桥长 车在桥上:指车尾接触桥到车头离开桥的一段路程,所行路成为桥长-车长 注意:行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。 例:(相遇问题)甲、乙两人从相距为180千米的A、B两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行驶。已知甲的速度为15千米/小时,乙的速度为45千米/小时。(1)经过多少时间两人相遇? (2)相遇后经过多少时间乙到达A地?变式:甲、乙两人从A,B两地同时出
10、发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行驶。出发后经3 小时两人相遇。已知在相遇时乙比甲多行了90千米,相遇后经 1小时乙到达A地。问甲、乙行驶的速度分别是多少?例:(追及问题)市实验中学学生步行到郊外旅行。(1)班学生组成前队,步行速度为4千米/时,(2)班学生组成后队,速度为6千米/时。前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时。(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员走的路程是多少?(3)两队何时相距3千米? (4)两队何时相距8千米?变式1:甲,乙两人登一座山,甲每分钟登高10米,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 数学 年级 上册 一元一次方程 应用题 专题
限制150内