小学数学奥数基础教程(五年级)(共5页).doc
《小学数学奥数基础教程(五年级)(共5页).doc》由会员分享,可在线阅读,更多相关《小学数学奥数基础教程(五年级)(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上小学数学奥数基础教程(五年级) -第15讲本教程共30讲孙子问题与逐步约束法在古书孙子算经中有一道题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”意思是:有一堆物品,三个三个数剩两个,五个五个数剩三个,七个七个数剩两个。求这堆物品的个数。我们称这类问题为孙子问题。例1 一个数除以3余2,除以5余3,除以7余2。求满足条件的最小自然数。分析与解:这道例题就是孙子算经中的问题。这个问题有三个条件,一下子不好解答。那么,我们能不能通过先求出满足其中一个条件的数,然后再逐步增加条件,达到最终解决问题的目的呢?我们试试看。满足“除以3余2”的数,有2
2、,5,8,11,14,17,在上面的数中再找满足“除以5余3”的数,可以找到8,8是同时满足“除以3余2”、“除以5余3”两个条件的数,容易知道,8再加上3与5的公倍数,仍然满足这两个条件,所以满足这两个条件的数有8,23,38,53,68,在上面的数中再找满足“除以7余2”的数,可以找到23,23是同时满足“除以3余2”、“除以5余3”、“除以7余2”三个条件的数。23再加上或减去3,5,7的公倍数,仍然满足这三个条件,3,5,7=105,因为23105,所以满足这三个条件的最小自然数是23。在例1中,若找到的数大于3,5,7,则应当用找到的数减去3,5,7的倍数,使得差小于3,5,7,这个
3、差即为所求的最小自然数。例2 求满足除以5余1,除以7余3,除以8余5的最小的自然数。分析与解:与例1类似,先求出满足“除以5余1”的数,有6,11,16,21,26,31,36,在上面的数中,再找满足“除以7余3”的数,可以找到31。同时满足“除以5余1”、“除以7余3”的数,彼此之间相差57=35的倍数,有31,66,101,136,171,206,在上面的数中,再找满足“除以8余5”的数,可以找到101。因为1015,7,8=280,所以所求的最小自然数是101。在例1、例2中,各有三个约束条件,我们先解除两个约束条件,求只满足一个约束条件的数,然后再逐步加上第二个、第三个约束条件,最终
4、求出了满足全部三个约束条件的数。这种先放宽条件,再逐步增加条件的解题方法,叫做逐步约束法。例3 在10000以内,除以3余2,除以7余3,除以11余4的数有几个?解:满足“除以3余2”的数有5,8,11,14,17,20,23,再满足“除以7余3”的数有17,38,59,80,101,再满足“除以11余4”的数有59。因为阳3,7,11=231,所以符合题意的数是以59为首项,公差是231的等差数列。(10000-59)231=438,所以在10000以内符合题意的数共有44个。例4 求满足除以6余3,除以8余5,除以9余6的最小自然数。分析与解:如果给所求的自然数加3,所得数能同时被6,8,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 数学 基础教程 年级
限制150内