《因式分解的常用方法(共6页).doc》由会员分享,可在线阅读,更多相关《因式分解的常用方法(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上因式分解的常用方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因
2、式分解中常用的公式,例如:(1)(a+b)(a-b) = a2-b2 -a2-b2=(a+b)(a-b);(2) (ab)2 = a22ab+b2 a22ab+b2=(ab)2;(3) (a+b)(a2-ab+b2) =a3+b3- a3+b3=(a+b)(a2-ab+b2);(4) (a-b)(a2+ab+b2) = a3-b3 -a3-b3=(a-b)(a2+ab+b2)下面再补充两个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); 三、分组分解法.(一)分组后能直接提公因
3、式练习:分解因式1、 2、(二)分组后能直接运用公式例3、分解因式:分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。 解:原式= = =例4、分解因式: 解:原式= = =综合练习:1. 2. 3. 4. 5. 6. 四、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式进行分解。特点:(1)二次项系数是1; (2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。思考:十字相乘有什么基本规律?例.已知05,且为整数,若能用十字相乘法分解因式,求符合条件的.解析:凡是能十字相乘的二次三项 式ax2+bx+c,都要求 0
4、而且是一个完全平方数。于是为完全平方数,(二)二次项系数不为1的二次三项式条件:(1) (2) (3) 分解结果:=例7、分解因式:分析: 1 -2 3 -5 (-6)+(-5)= -11解:=练习7、分解因式:(1) (2) (3) (4)(三)二次项系数为1的齐次多项式例8、分解因式:分析:将看成常数,把原多项式看成关于的二次三项式,利用十字相乘法进行分解。 1 8b 1 -16b 8b+(-16b)= -8b 解:= =练习8、分解因式(1)(2)(3)(四)二次项系数不为1的齐次多项式例9、 例10、 1 -2y 把看作一个整体 1 -1 2 -3y 1 -2 (-3y)+(-4y)=
5、 -7y (-1)+(-2)= -3 解:原式= 解:原式=练习9、分解因式:(1) (2)综合练习10、(1) (2)(3) (4)(5) (6)(7) (8)(9) (10)(11.)五、换元法。例13、分解因式(1) (2)解:(1)设2005=,则原式= = =(2)型如的多项式,分解因式时可以把四个因式两两分组相乘。 原式=设,则原式= =练习13、分解因式(1)(2) (3)六、添项、拆项、配方法,试根法,短除法。例15、分解因式(1) 解法1拆项。 解法2添项。原式= 原式= = = = = = =(2)解:原式=练习15、分解因式(1) (2)(3) (4)(5) (6)七、待定系数法或双十字相乘法。例16、分解因式分析:原式的前3项可以分为,则原多项式必定可分为解:设=对比左右两边相同项的系数可得,解得原式=练习17、(1)分解因式(2)分解因式 1在中,三边a,b,c满足 求证: 2 已知:_ 3. 已知:的值。 4. 求证:是6的倍数。(其中n为整数) 5. 已知:a、b、c为三角形的三边,比较的大小。6若ab=2,ac=,求(bc)23(bc)的值。7已知则8、计算的值是( ) A、 B、专心-专注-专业
限制150内