思法数学:初升高衔接讲义-第10讲---函数的奇偶性(共5页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《思法数学:初升高衔接讲义-第10讲---函数的奇偶性(共5页).doc》由会员分享,可在线阅读,更多相关《思法数学:初升高衔接讲义-第10讲---函数的奇偶性(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第10讲 函数的奇偶性一【学习目标】1.理解函数奇偶性的概念及其几何意义;2.能利用定义判断函数的奇偶性;3.学会运用函数图象理解和研究函数的性质.二【知识梳理】1.引入:“对称”是大自然的一种美,这种“对称美”在数学中也有大量的反映,让我们从图象和解析式两个方面总结下列各函数有什么共性?(1),;(2) ,. (1)与的共性:图象 ;解析式 (2)与的共性:图象 ;解析式 2.定义:(1)对于函数的定义域内的任意一个,都有,那么就叫做偶函数(2)对于函数的定义域的任意一个,都有,那么就叫做奇函数3.点拨:(1)如果函数是奇函数或偶函数,我们就说函数具有奇偶性;函数的
2、奇偶性是函数的整体性质;(2)根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、既不是奇函数也不是偶函数;(3)奇函数、偶函数的定义域关于原点对称,如果一个函数的定义域不关于“0”(原点)对称,则该函数既不是奇函数也不是偶函数;(4)偶函数的图象关于y轴对称,反过来,如果一个函数的图象关于y轴对称,那么这个函数为偶函数,且;奇函数的图象关于原点对称;反过来,如果一个函数的图象关于原点对称,那么这个函数为奇函数.若奇函数在时有意义,则.4.函数奇偶性的判断:(1)图象法;(2)定义法.用定义判断函数奇偶性的步骤是:先求定义域,看是否关于原点对称;再判断或是否恒成立;作出相应结论.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 初升 衔接 讲义 10 函数 奇偶性
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内