数学建模课后习题答案(共13页).doc
《数学建模课后习题答案(共13页).doc》由会员分享,可在线阅读,更多相关《数学建模课后习题答案(共13页).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 实验报告姓名:和家慧 专业:通信工程 学号: 周一下午78节 实验一:方程及方程组的求解一 实验目的:学会初步使用方程模型,掌握非线性方程的求解方法,方程组的求解方法,MATLAB函数直接求解法等。二 问题:路灯照明问题。在一条20m宽的道路两侧,分别安装了一只2kw和一只3kw的路灯,它们离地面的高度分别为5m和6m。在漆黑的夜晚,当两只路灯开启时 (1)两只路灯连线的路面上最暗的点和最亮的点在哪里? (2)如果3kw的路灯的高度可以在3m到9m之间变化,如何路面上最暗点的亮度最大? (3)如果两只路灯的高度均可以在3m到9m之间变化,结果又如何?三 数学模型 X
2、 SP1P2R112QyxOR2h1h2 解: 根据题意,建立如图模型 P1=2kw P2=3kw S=20m 照度计算公式: (k为照度系数,可取为1; P为路灯的功率)(1)设Q(x,0)点为两盏路灯连线上的任意一点,则两盏路灯在Q点的照度分别为 Q点的照度: 要求最暗点和最亮点,即为求函数I(x)的最大值和最小值,所以应先求出函数的极值点算法与编程利用MATLAB求得时x的值代码:s=solve(-30*x)/(25+x2)(5/2)+(54*(20-x)/(36+(20-x)2)(5/2);s1=vpa(s,8);s1计算结果运行结果:s1 = 19. 9. 8.-11.*i .e-1
3、 8.+11.*i因为x=0,选取出有效的x值后,利用MATLAB求出对应的I(x)的值,如下表:x00.9.19.20I(x)0.0.0.0.0.综上,x=9.33m时,为最暗点;x=19.97m时,为最亮点。(2) 路灯2的高度可以变化时,Q点的照度为关于x和h2的二元函数: 与(1)同理,求出函数I(x,h2)的极值即为最暗点和最亮点 算法与编程 利用matlab求得x: solve(3/(h2+(20-x)2)(3/2)-3*(3*h2)/(h2+(20-x)2)(5/2)=0) ans = 20+2(1/2)*h 20-2(1/2)*h 即x1=20+2(1/2)*h (舍去) x2
4、=20-2(1/2)*h 利用matlab求解h2solve(-30*(20-2(1/2)*h)/(25+(20-2(1/2)*h)2)(5/2)+9*h*(20-(20-2(1/2)*h)/(h2+(20-(20-2(1/2)*h)2)(5/2)=0) ans = 7. 14. 因为h在39之间,所以h2=7.42239m 再利用matlab求解x和亮度I 算法: h=7.42239; x=20-2(1/2)*h I=10/(25+x2)(3/2)+(3*h)/(h2+(20-x)2)(3/2) 计算结果结果: x = 9.5032 I = 0.0186综上,x=9.5032 ,h2=7.4
5、2239时,最暗点的亮度最大,为0.0186w。(3) 两盏路灯的高度均可以变化时,I为关于x,h1,h2的三元函数,用同样的方法求解 =算法与编程利用matlab求解x,h1,h2的值: 算法:solve(1/(20-x)3)=2/(3*(x3); s1=vpa(s,6); a=(1/sqrt(2)*s1; a1=double(a); b=(1/sqrt(2)*(20-s1); b1=double(b); a1,b1,s1 计算结果 结果: a1 = 6.5940 5.1883 +12.0274i 5.1883 -12.0274i b1 = 7.5482 8.9538 -12.0274i 8
6、.9538 +12.0274i s1 = 9.32530 7.33738+17.0093*i 7.33738-17.0093*i综上,h1 =6.5940,h2=7.5482 ,x=9.32530时,最暗点的亮度最大四 分析、检验和结论经过数学模型的建立和数学软件MATLAB的使用,我们已经得到较为准确的答案。五 心得体会随着计算机技术的发展,大型的线性/非线性方程组我们已可以用计算机简单方便的计算出来了。对我们的生活有很好的提高。实验二:数据插值与拟合实验一、 实验目的及意义1 了解插值、最小二乘拟合的基本原理2 掌握用MATLAB计算一维插值和两种二维插值的方法;3 掌握用MATLAB作最
7、小二乘多项式拟合和曲线拟合的方法。二、实验内容1针对实际问题,试建立数学模型。用MATLAB计算一维插值和两种二维插值的方法求解;1用MATLAB中的函数作一元函数的多项式拟合与曲线拟合,作出误差图;2用MATLAB中的函数作二元函数的最小二乘拟合,作出误差图;3针对预测和确定参数的实际问题,建立数学模型,并求解。三 问题:数据插值 山区地貌:在某山区测得一些地点的高程如下表3.8。平面区域为 (1200=x=4000,1200=y=3600)试作出该山区的地貌图和等高线图,并对几种插值方法进行比较。表3.8 某山区高程表yx1200160020002400280032003600400012
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 课后 习题 答案 13
限制150内