苏教版八年级上册《轴对称图形》全章复习与巩固--知识讲解(提高)(共11页).doc
《苏教版八年级上册《轴对称图形》全章复习与巩固--知识讲解(提高)(共11页).doc》由会员分享,可在线阅读,更多相关《苏教版八年级上册《轴对称图形》全章复习与巩固--知识讲解(提高)(共11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上轴对称图形全章复习与巩固知识讲解(提高)【学习目标】1. 认识轴对称、轴对称图形,理解轴对称的基本性质及它们的简单应用;2. 了解线段、角的轴对称性,并掌握与其相关的性质;3. 了解等腰三角形、等边三角形的有关概念,并掌握它们的性质以及判定方法.【知识网络】【要点梳理】要点一、轴对称1.轴对称图形和轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.(2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个
2、图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:关于某条直线对称的两个图形形状相同,大小相等,是全等形;如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别: 轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一
3、个轴对称图形2.线段的垂直平分线垂直并且平分一条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线3.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.4.用坐标表示轴对称点(,)关于轴对称的点的坐标为(,);点(,)关于轴对称的点的坐标为(,);点(,)关于原点对称的点的坐标为(,).要点二、线段、角的轴对称性1.线段的轴对称性(1)线段是轴对称图形,线段的垂直平分线是
4、它的对称轴.(2)线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;(3)线段垂直平分线的性质定理的逆定理:到线段两个端距离相等的点在线段的垂直平分线2.角的轴对称性(1)角是轴对称图形,角的平分线所在的直线是它的对称轴.(2)角平分线上的点到角两边的距离相等.(3)角的内部到角两边距离相等的点在角的平分线上.要点三、等腰三角形 1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质 等腰三角形的两个底角相等,即“等边对等角”;等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45
5、.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等 边”).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60.(3)等边三角形的判定: 三条边都相等的三角形是等边三角形; 三个角都相等的三角形是等边三角形; 有一个角为 60的等腰三角形是等边三角形.3.直角三角形的性质定理:直角三角形斜边上的中线等于斜边的一半.【典型例题】类型一、轴对称的性质与应用1、如图,由四个小正方形组成的田字格中,ABC的顶点都是小正方形的顶点在田字格上画与ABC成轴对称的三角形,且顶点都是小正方
6、形的顶点,则这样的三角形(不包含ABC本身)共有()A.1个 B.2个 C.3个 D.4个【思路点拨】分别以正方形的对角线和田字格的十字线为对称轴,来找三角形.【答案】C;【解析】先把田字格图标上字母如图,确定对称轴找出符合条件的三角形,再计算个数HEC与ABC关于CD对称;FDB与ABC关于BE对称;GED与ABC关于HF对称;关于AG对称的是它本身所以共3个【总结升华】本题考查了轴对称的性质;确定对称轴然后找出成轴对称的三角形是解题的关键举一反三:【变式】如图,ABC的内部有一点P,且D,E,F是P分别以AB,BC,AC为对称轴的对称点若ABC的内角A70,B60,C50,则ADBBECC
7、FA( )A.180 B.270 C.360 D.480【答案】C;解:连接AP,BP,CP,D,E,F是P分别以AB,BC,AC为对称轴的对称点ADBAPB,BECBPC,CFAAPC,ADBBECCFAAPBBPCAPC3602、已知MON40,P为MON内一定点,OM上有一点A,ON上有一点B,当PAB的周长取最小值时,求APB的度数. 【思路点拨】求周长最小,利用轴对称的性质,找到P的对称点来确定A、B的位置,角度的计算,可以通过三角形内角和定理和等腰三角形的性质计算.【答案与解析】解:分别作P关于OM、ON的对称点,连接交OM于A,ON于B.则PAB为符合条件的三角形.MON40 1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 轴对称图形 苏教版八 年级 上册 轴对称 图形 复习 巩固 知识 讲解 提高 11
限制150内