新北师大版八年级数学[上册]勾股定理专题训练优质讲义(共6页).doc
《新北师大版八年级数学[上册]勾股定理专题训练优质讲义(共6页).doc》由会员分享,可在线阅读,更多相关《新北师大版八年级数学[上册]勾股定理专题训练优质讲义(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上勾股定理本章常用知识点:1、勾股定理:直角三角形两直角边的 等于斜边的 。如果用字母a,b,c分别表示直角三角形的两直角边和斜边,那么勾股定理可以表示为: 。2、勾股数:满足a+b=c的三个 ,称为勾股数。常见勾股数有:3、常见平方数:; ; ; ; ; ; ; ; ; ; ; ;专题归类:专题一、勾股定理与面积1、在RtABC中,C=,a=5,c=3.,则RtABC的面积S= 。2、一个直角三角形周长为12米,斜边长为5米,则这个三角形的面积为: 。3、直线l上有三个正方形a、b、c,若a和c的面积分别为5和11,则b的面积为 labc4、在直线l上依次摆放着七个正
2、方形(如图所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1S2S3S4等于 。5、三条边分别是5,12,13的三角形的面积是 。6、如果一个三角形的三边长分别为a,b,c且满足:a+b+c+50=6a+8b+10c,则这个三角形的面积为 。7、如图1,BC=8,AB=10,CD是斜边的高,求CD的长?BDCA图17、如下图,在ABC中,AB=8cm,BC=15cm,P是到ABC三边距离相等的点,求点P到ABC三边的距离。 8、有一块土地形状如图3所示,AB=20米,BC=15米,CD=7米,请计算这块土地的面积。(添加辅助线构造
3、直角三角形) DCBA图39、如右图:在四边形ABCD中,AB=2,CD=1,A=60,求四边形ABCD的面积。10、如图2-3,把矩形ABCD沿直线BD向上折叠,使点C落在C的位置上,已知AB=3,BC=7,求:重合部分EBD的面积11、如图,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1、S2、S3表示,则不难证明S1=S2+S3 .(1) 如图,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,那么S1、S2、S3之间有什么关系?(不必证明)(2) 如图,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,
4、请你确定S1、S2、S3之间的关系并加以证明;(3) 若分别以直角三角形ABC三边为边向外作三个正多边形,其面积分别用S1、S2、S3表示,请你猜想S1、S2、S3之间的关系?.专题二、勾股定理与折叠1、如图4,矩形纸片ABCD的边AB=10cm,BC=6cm,E为BC上一点,将矩形纸片沿AE折叠,点B恰好落在DC边上的点G处,求BE的长。图4EGCDBA2、有一个直角三角形纸片,两直角边的长AC=6cm,BC=8cm,现将直角边AC沿AD对折,使它落在斜边AB上,且与AE重合,求CD的长?EDBCA图53、如图6,在矩形纸片ABCD中,AB=,BC=6,沿EF折叠后,点C落在AB边上的点P处
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 上册 北师大 八年 级数 勾股定理 专题 训练 优质 讲义
限制150内