人工智能原理及其应用考试复习题(共16页).doc
《人工智能原理及其应用考试复习题(共16页).doc》由会员分享,可在线阅读,更多相关《人工智能原理及其应用考试复习题(共16页).doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第2章 知识表示方法部分参考答案2.8 设有如下语句,请用相应的谓词公式分别把他们表示出来:(1) 有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花 。解:定义谓词P(x):x是人L(x,y):x喜欢y其中,y的个体域是梅花,菊花。将知识用谓词表示为:(x )(P(x)L(x, 梅花)L(x, 菊花)L(x, 梅花)L(x, 菊花)(2) 有人每天下午都去打篮球。解:定义谓词P(x):x是人B(x):x打篮球A(y):y是下午将知识用谓词表示为:(x )(y) (A(y)B(x)P(x)(3) 新型计算机速度又快,存储容量又大。解:定义谓词NC(x):x是新
2、型计算机F(x):x速度快B(x):x容量大将知识用谓词表示为:(x) (NC(x)F(x)B(x)(4) 不是每个计算机系的学生都喜欢在计算机上编程序。解:定义谓词S(x):x是计算机系学生L(x, pragramming):x喜欢编程序U(x,computer):x使用计算机将知识用谓词表示为: (x) (S(x)L(x, pragramming)U(x,computer)(5) 凡是喜欢编程序的人都喜欢计算机。解:定义谓词P(x):x是人L(x, y):x喜欢y将知识用谓词表示为:(x) (P(x)L(x,pragramming)L(x, computer)2.18 请对下列命题分别写出
3、它们的语义网络:(1) 每个学生都有一台计算机。gGSgGSGS解:占有权计算机学生AKOISAISAFOwnsOwnercosg(2) 高老师从3月到7月给计算机系学生讲计算机网络课。 解:7月8月StartEnd老师ISAObjectSubject高老师计算机系学生讲课事件ActionCaurse计算机网络讲课(3) 学习班的学员有男、有女、有研究生、有本科生。 解:参例2.14(4) 创新公司在科海大街56号,刘洋是该公司的经理,他32岁、硕士学位。 解:参例2.10(5) 红队与蓝队进行足球比赛,最后以3:2的比分结束。 解:比赛AKOParticipants1Outcome3:22足
4、球赛红队Participants 2蓝队2.19 请把下列命题用一个语义网络表示出来:(1) 树和草都是植物;植物解:AKOAKO草树(2) 树和草都有叶和根;根叶 解:HaveHave植物是一种是一种草树(3) 水草是草,且生长在水中; 解:LiveAKOAKO水草水中植物草(4) 果树是树,且会结果; 解:CanAKOAKO果树结果植物树(5) 梨树是果树中的一种,它会结梨。 解:CanAKOAKO梨树树果树结梨5.18 设某小组有5个同学,分别为S1,S2,S3,S4,S5。若对每个同学的“学习好”程度打分: S1:95 S2:85 S3:80 S4:70 S5:90这样就确定了一个模糊
5、集F,它表示该小组同学对“学习好”这一模糊概念的隶属程度,请写出该模糊集。 解:对模糊集为F,可表示为: F=95/ S1+85/S2+80/ S3+70/S4+90/S5或 F=95/ S1, 85/S2, 80/ S3, 70/S4, 90/S5 5.19 设有论域 U=u1, u2, u3, u4, u5并设F、G是U上的两个模糊集,且有 F=0.9/u1+0.7/u2+0.5/u3+0.3/u4 G=0.6/u3+0.8/u4+1/u5请分别计算 FG,FG,F。 解:FG=(0.90)/ u1+(0.70)/ u2+(0.50.6)/u3+(0.30.8)/u4+(01)/u5 =0
6、/ u1+0/ u2+0.5/u3+0.3/u4+0/u5 =0.5/u3+0.3/u4FG=(0.90)/ u1+(0.70)/ u2+(0.50.6)/u3+(0.30.8)/u4+(01)/u5 =0.9/ u1+0.7/ u2+0.6/u3+0.8/u4+1/u5F=(1-0.9)/ u1+(1-0.7)/ u2+(1-0.5)/u3+(1-0.3)/u4+(1-0)/u5 =0.1/ u1+0.3/ u2+0.5/u3+0.7/u4+1/u55.21设有如下两个模糊关系:请写出R1与R2的合成R1R2。 解:R(1,1)=(0.30.2)(0.70.6)(0.20.9)= 0.20.
7、60.2=0.6R(1,2)=(0.30.8)(0.70.4)(0.20.1)= 0.30.40.1=0.4R(2,1)=(10.2)(00.6)(0.40.9)= 0.200.4=0.4R(2,2)=(10.8)(00.4)(0.40.1)= 0.800.1=0.8R(3,1)=(00.2)(0.50.6)(10.9)= 0.20.60.9=0.9R(3,2)=(00.8)(0.50.4)(10.1)= 00.40.1=0.4因此有5.22 设F是论域U上的模糊集,R是UV上的模糊关系,F和R分别为:求模糊变换FR。 解: =0.10.40.6, 0.30.60.3,0.40.60 =0.6
8、, 0.6, 0.6第3章 确定性推理部分参考答案3.8 判断下列公式是否为可合一,若可合一,则求出其最一般合一。(1) P(a, b), P(x, y)(2) P(f(x), b), P(y, z)(3) P(f(x), y), P(y, f(b)(4) P(f(y), y, x), P(x, f(a), f(b) (5) P(x, y), P(y, x)解:(1) 可合一,其最一般和一为:=a/x, b/y。(2) 可合一,其最一般和一为:=y/f(x), b/z。(3) 可合一,其最一般和一为:= f(b)/y, b/x。(4) 不可合一。(5) 可合一,其最一般和一为:= y/x。3.
9、11 把下列谓词公式化成子句集:(1) (x)(y)(P(x, y)Q(x, y)(2) (x)(y)(P(x, y)Q(x, y)(3) (x)(y)(P(x, y)(Q(x, y)R(x, y)(4) (x) (y) (z)(P(x, y)Q(x, y)R(x, z) 解:(1) 由于(x)(y)(P(x, y)Q(x, y)已经是Skolem标准型,且P(x, y)Q(x, y)已经是合取范式,所以可直接消去全称量词、合取词,得 P(x, y), Q(x, y) 再进行变元换名得子句集: S= P(x, y), Q(u, v) (2) 对谓词公式(x)(y)(P(x, y)Q(x, y)
10、,先消去连接词“”得:(x)(y)(P(x, y)Q(x, y)此公式已为Skolem标准型。 再消去全称量词得子句集: S=P(x, y)Q(x, y) (3) 对谓词公式(x)(y)(P(x, y)(Q(x, y)R(x, y),先消去连接词“”得:(x)(y)(P(x, y)(Q(x, y)R(x, y)此公式已为前束范式。再消去存在量词,即用Skolem函数f(x)替换y得:(x)(P(x, f(x)Q(x, f(x)R(x, f(x)此公式已为Skolem标准型。 最后消去全称量词得子句集: S=P(x, f(x)Q(x, f(x)R(x, f(x) (4) 对谓词(x) (y) (
11、z)(P(x, y)Q(x, y)R(x, z),先消去连接词“”得:(x) (y) (z)(P(x, y)Q(x, y)R(x, z)再消去存在量词,即用Skolem函数f(x)替换y得:(x) (y) (P(x, y)Q(x, y)R(x, f(x,y)此公式已为Skolem标准型。 最后消去全称量词得子句集:S=P(x, y)Q(x, y)R(x, f(x,y)3-13 判断下列子句集中哪些是不可满足的:(1) PQ, Q, P, P(2) PQ , PQ, PQ, PQ (3) P(y)Q(y) , P(f(x)R(a)(4) P(x)Q(x) , P(y)R(y), P(a), S(
12、a), S(z)R(z)(5) P(x)Q(f(x),a) , P(h(y)Q(f(h(y), a)P(z)(6) P(x)Q(x)R(x) , P(y)R(y), Q(a), R(b) 解:(1) 不可满足,其归结过程为:PQQPPNIL(2) 不可满足,其归结过程为:PQPQQPQPQQNIL (3) 不是不可满足的,原因是不能由它导出空子句。(4) 不可满足,其归结过程略(5) 不是不可满足的,原因是不能由它导出空子句。(6) 不可满足,其归结过程略 3.14 对下列各题分别证明G是否为F1,F2,Fn的逻辑结论:(1) F: (x)(y)(P(x, y)G: (y)(x)(P(x, y
13、)(2) F: (x)(P(x)(Q(a)Q(b)G: (x) (P(x)Q(x)(3) F: (x)(y)(P(f(x)(Q(f(y)G: P(f(a)P(y)Q(y)(4) F1: (x)(P(x)(y)(Q(y)L(x.y)F2: (x) (P(x)(y)(R(y)L(x.y)G: (x)(R(x)Q(x)(5) F1: (x)(P(x)(Q(x)R(x)F2: (x) (P(x)S(x)G: (x) (S(x)R(x) 解:(1) 先将F和G化成子句集: S=P(a,b), P(x,b) 再对S进行归结:P(x,b)P(a,b)NIL a/x 所以,G是F的逻辑结论(2) 先将F和G化
14、成子句集由F得:S1=P(x),(Q(a)Q(b)由于G为: (x) (P(x)Q(x),即 (x) ( P(x) Q(x),可得: S2= P(x) Q(x)因此,扩充的子句集为:S= P(x),(Q(a)Q(b), P(x) Q(x)再对S进行归结:Q(a)Q(b)Q(a) P(x) Q(x) P(a)P(x)NILQ(a)Q(b) a/b P(x) Q(x)Q(a)a/x P(a)P(x) a/xNIL 所以,G是F的逻辑结论 同理可求得(3)、(4)和(5),其求解过程略。 3.15 设已知:(1) 如果x是y的父亲,y是z的父亲,则x是z的祖父;(2) 每个人都有一个父亲。使用归结演
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工智能 原理 及其 应用 考试 复习题 16
限制150内