用逆滤波和维纳滤波进行图像复原(共5页).doc
《用逆滤波和维纳滤波进行图像复原(共5页).doc》由会员分享,可在线阅读,更多相关《用逆滤波和维纳滤波进行图像复原(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 用逆滤波和维纳滤波进行图像复原在图像的获取、传输以及记录保存过程中,由于各种因素,如成像设备与目标物体的相对运动,大气的湍流效应,光学系统的相差,成像系统的非线性畸变,环境的随机噪声等原因都会使图像产生一定程度的退化,图像退化的典型表现是图像出现模糊、失真,出现附加噪声等。由于图像的退化,使得最终获取的图像不再是原始图像,图像效果明显变差。为此,要较好地显示原始图像,必须对退化后的图像进行处理,恢复出真实的原始图像,这一过程就称为图像复原。图像复原技术是图像处理领域一类非常重要的处理技术,主要目的就是消除或减轻在图像获取及传输过程中造成的图像质量下降即退化现象,恢复
2、图像的本来面目。图像复原的过程是首先利用退化现象的某种先验知识,建立退化现象的数学模型,然后再根据退化模型进行反向的推演运算,以恢复原来的景物图像。一、 实验目的1了解图像复原模型2了解逆滤波复原和维纳滤波复原3掌握维纳滤波复原、逆滤波的Matlab实现二、实验原理1、逆滤波复原如果退化图像为,原始图像为,在不考虑噪声的情况下,其退化模型可用下式表示 (12-25)由傅立叶变换的卷积定理可知有下式成立 (12-26)式中,、分别是退化图像、点扩散函数、原始图像的傅立叶变换。所以 (12-27)由此可见,如果已知退化图像的傅立叶变换和系统冲激响应函数(“滤被”传递函数),则可以求得原图像的傅立叶
3、变换,经傅立叶反变换就可以求得原始图像,其中除以起到了反向滤波的作用。这就是逆滤波复原的基本原理。在有噪声的情况下,逆滤波原理可写成如下形式 (12-28)式中,是噪声的傅立叶变换。2、维纳滤波复原维纳滤波就是最小二乘滤波,它是使原始图像与其恢复图像之间的均方误差最小的复原方法。对图像进行维纳滤波主要是为了消除图像中存在的噪声,对于线性空间不变系统,获得的信号为 (12-29)为了去掉中的噪声,设计一个滤波器,其滤波器输出为,即 (12-30)使得均方误差式 (12-31)成立,其中称为给定时的最小二乘估计值。 设为的相关函数的傅立叶变换,分别为的相关函数的傅立叶变换,为冲激响应函数的傅立叶变
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 滤波 进行 图像 复原
限制150内