用截长补短法证明三角形全等(共2页).doc
《用截长补短法证明三角形全等(共2页).doc》由会员分享,可在线阅读,更多相关《用截长补短法证明三角形全等(共2页).doc(2页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上全等三角形中的截长补短板块一、截长补短【例1】 已知中,、分别平分和,、交于点,试判断、的数量关系,并加以证明 【例2】 如图,点为正三角形的边所在直线上的任意一点(点除外),作,射线与外角的平分线交于点,与有怎样的数量关系?【例3】 如图2-9所示已知正方形ABCD中,M为CD的中点,E为MC上一点,且BAE=2DAM求证:AE=BC+CE分析证明一条线段等于两条线段和的基本方法有两种:(1)通过添辅助线“构造”一条线段使其为求证中的两条线段之和(),再证所构造的线段与求证中那一条线段相等(2)通过添辅助线先在求证中长线段()上截取与线段中的某一段(如)相等的线段,
2、再证明截剩的部分与线段中的另一段()相等 【例4】 已知:如图,ABCD是正方形,FAD=FAE. 求证:BE+DF=AE.【例5】 五边形ABCDE中,AB=AE,BC+DE=CD,ABC+AED=180,求证:AD平分CDE【例6】 如图所示,是边长为的正三角形,是顶角为的等腰三角形,以为顶点作一个的,点、分别在、上,求的周长 板块二、全等与角度【例7】如图,在中,是的平分线,且,求的度数. 由已知条件可以想到将折线“拉直”成,利用角平分线可以构造全等三角形.同样地,将拆分成两段,之后再利用三角形全等亦可,此思路也是十分自然的.需要说明的是,无论采取哪种方法,都体现出关于角平分线“对称”的思想. 上述方法我们分别称之为“补短法”和“截长法”,它们是证明等量关系时优先考虑的方法.【例8】 在正内取一点,使,在外取一点,使,且,求. 专心-专注-专业
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 截长补短 证明 三角形 全等
限制150内