2013年高三数学(理科)二轮复习教案专题七第三讲圆锥曲线的综合问题(共12页).doc
《2013年高三数学(理科)二轮复习教案专题七第三讲圆锥曲线的综合问题(共12页).doc》由会员分享,可在线阅读,更多相关《2013年高三数学(理科)二轮复习教案专题七第三讲圆锥曲线的综合问题(共12页).doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第三讲圆锥曲线的综合问题研热点(聚焦突破)类型一 圆锥曲线中的定点定值问题常见的类型(1)直线恒过定点问题;(2)动圆恒过定点问题;(3)探求定值问题;(4)证明定值问题例1(2012年高考福建卷)如图,椭圆E:1(ab0)的左焦点为F1,右焦点为F2,离心率e.过F1的直线交椭圆于A、B两点,且ABF2的周长为8.(1)求椭圆E的方程;(2)设动直线l:ykxm与椭圆E有且只有一个公共点P,且与直线x4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由解析(1)因为|AB|AF2|BF2|8,即|
2、AF1|F1B|AF2|BF2|8.又|AF1|AF2|BF1|BF2|2a,所以4a8,a2.又因为e,即,所以c1,所以b.故椭圆E的方程是1.(2)由消去y得(4k23)x28kmx4m2120.因为动直线l与椭圆E有且只有一个公共点P(x0,y0),所以m0且0,即64k2m24(4k23)(4m212)0,化简得4k2m230.(*)所以P(,)由得Q(4,4km)假设平面内存在定点M满足条件,由图形对称性知,点M必在x轴上设M(x1,0),则对满足(*)式的m,k恒成立因为=(x1,),=(4x1,4km),由,得4x1x30,整理,得(4x14)x4x130.(* *)由于(*
3、*)式对满足(*)式的m,k恒成立,所以解得x11.故存在定点M(1,0),使得以PQ为直径的圆恒过点M.跟踪训练已知抛物线y24x,圆F:(x1)2y21,过点F作直线l,自上而下顺次与上述两曲线交于点A,B,C,D(如图所示),则|AB|CD|的值正确的是()A等于1B最小值是1C等于4 D最大值是4解析:设直线l:xty1,代入抛物线方程,得y24ty40.设A(x1,y1),D(x2,y2),根据抛物线定义AFx11,DFx21,故|AB|x1,|CD|x2,所以|AB|CD|x1x2,而y1y24,代入上式,得|AB|CD|1.故选A.答案:A类型二 最值与范围问题1求参数范围的方法
4、据已知条件建立等式或不等式的函数关系,再求参数范围2求最值问题的方法(1)几何法题目中给出的条件有明显的几何特征,则考虑用图象来解决;(2)代数法题目中给出的条件和结论几何特征不明显则可以建立目标函数,再求这个函数的最值,求最值的常见方法是判别式法、基本不等式法,单调性法等例2(2012年高考广东卷)在平面直角坐标系xOy中,已知椭圆C:1(ab0)的离心率e,且椭圆C上的点到点Q(0,2)的距离的最大值为3.(1)求椭圆C的方程;(2)在椭圆C上,是否存在点M(m,n),使得直线l:mxny1与圆O:x2y21相交于不同的两点A、B,且OAB的面积最大?若存在,求出点M的坐标及对应的OAB的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2013 年高 数学 理科 二轮 复习 教案 专题 第三 圆锥曲线 综合 问题 12
限制150内