《2010中考数学压轴题精选(二)(共31页).doc》由会员分享,可在线阅读,更多相关《2010中考数学压轴题精选(二)(共31页).doc(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2010全国各地中考数学压轴题精选(一)(附答案)(绵阳、桂林、长沙、嘉兴、鸡西、昆明、济南、凉山、中山、宁德、德州、河北、丽水、深圳、成都、广安、珠海、江西、武汉、黄石、山西、宜宾、徐州、潜江、荆州、大连、厦门、随州、哈尔滨、河南、兰州、潼南、金华、盐城、淮安、台州、益阳、烟台、苏州、丹东)1.(8分)如图,O的圆心在RtABC的直角边AC上,O经过C、D两点,与斜边AB交于点E,连结BO、ED,有BOED,作弦EFAC于G,连结DF (1)求证:AB为O的切线; (2)若O的半径为5,sinDFE=,求EF的长2.(10分)国家推行“节能减排,低碳经济”政策后,某
2、环保节能设备生产企业的产品供不应求若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元已知这种设备的月产量x(套)与每套的售价(万元)之间满足关系式,月产量x(套)与生产总成本(万元)存在如图所示的函数关系. (1)直接写出与x之间的函数关系式; (2)求月产量x的范围; (3)当月产量x(套)为多少时,这种设备的利润W(万元)最大?最大利润是多少?3.(12分)如图,直角梯形OABC的直角顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上,OABC,D是BC上一点,BD=OA=,AB=3,OAB=45,E、F分别是线段OA、A
3、B上的两动点,且始终保持DEF=45(1)直接写出D点的坐标;(2)设OE=x,AF=y,试确定y与x之间的函数关系;(3)当AEF是等腰三角形时,将AEF沿EF折叠,得到,求与五边形OEFBC重叠部分的面积4(本题满分l2分)将直角边长为6的等腰RtAOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C及点B(3,0)(1)求该抛物线的解析式;(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当APE的面积最大时,求点P的坐标;24题图(3)在第一象限内的该抛物线上是否存在点G,使AGC的面积与(2)中APE的
4、最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由5.如图,ABC内接于O,AB6,AC4,D是AB边上一点,P是优弧BAC的中点,连结PA、PB、PC、PD.(1)当BD的长度为多少时,PAD是以AD为底边的等腰三角形?并证明;(2)若cosPCB=,求PA的长.6.如图,平面直角坐标系中有一矩形ABCD(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6);将BCD沿BD折叠(D点在OC边上),使C点落在OA边的E点上,并将BAE沿BE折叠,恰好使点A落在BD的点F上.(1)直接写出ABE、CBD的度数,并求折痕BD所在直线的函数解析式;(2)过F点作FGx轴,垂足为G
5、,FG的中点为H,若抛物线经过B、H、D三点,求抛物线的函数解析式;(3)若点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B、D点),过点P作PNBC分别交BC和BD于点N、M,设h=PM-MN,试求出h与P点横坐标x的函数解析式,并画出该函数的简图,分别写出使PMMN成立的x的取值范围。7(11分)某同学从家里出发,骑自行车上学时,速度v(米/秒)与时间t(秒)的关系如图a,A(10,5),B(130,5),C(135,0).(1)求该同学骑自行车上学途中的速度v与时间t的函数关系式;(2)计算该同学从家到学校的路程(提示:在OA和BC段的运动过程中的平均速度分别等于它们中点时刻的
6、速度,路程平均速度时间);(3)如图b,直线xt(0t135),与图a的图象相交于P、Q,用字母S表示图中阴影部分面积,试求S与t的函数关系式;(4)由(2)(3),直接猜出在t时刻,该同学离开家所超过的路程与此时S的数量关系. 图a图b8(15分)已知抛物线顶点为C(1,1)且过原点O.过抛物线上一点P(x,y)向直线作垂线,垂足为M,连FM(如图).(1)求字母a,b,c的值;(2)在直线x1上有一点,求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时PFM为正三角形;(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PMPN恒成立,若存在请求出t值,若不存在请说明理由.9(
7、本题10分) 已知:在ABC中ABAC,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,BAEBDF,点M在线段DF上,ABEDBM (1)如图1,当ABC45时,求证:AEMD; (2)如图2,当ABC60时,则线段AE、MD之间的数量关系为: 。(3)在(2)的条件下延长BM到P,使MPBM,连接CP,若AB7,AE,求tanACP的值10、(11分)在平面直角坐标系中,已知抛物线经过A,B,C三点(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,AMB的面积为S求S关于m的函数关系式,并求出S的最大值(3)若点P是抛物线上的动点,点Q是直
8、线上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标11.(本题满分10分)如图,已知AB是O的直径,点C在O上,过点C的直线与AB的延长线交于点P,AC=PC,COB=2PCB. (1)求证:PC是O的切线; (2)求证:BC=AB; (3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MNMC的值.第26题图 12.(本题满分10分)已知平行四边形ABCD中,对角线AC和BD相交于点O,AC=10, BD=8 (1)若ACBD,试求四边形ABCD的面积 ;(2)若AC与BD的夹角AOD=,求四边形ABCD的面积; (3)试讨论:若把题
9、目中“平行四边形ABCD”改为“四边形ABCD”,且AOD=AC=,BD=,试求四边形ABCD的面积(用含,的代数式表示)第 27题图13.(本题满分11分)如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线经过坐标原点O和x轴上另一点E(4,0)(1)当x取何值时,该抛物线的最大值是多少?(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0t3),直线AB与该抛物线的交点为N(如图2所示). 当时,判断点P是否在直线ME上,并说明
10、理由; 以P、N、C、D为顶点的多边形面积是否可能为5,若有可能,求出此时N点的坐标;若无可能,请说明理由图1 第28题图 图214.(12分)如图, 已知抛物线与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,-1).(1)求抛物线的解析式;(2)点E是线段AC上一动点,过点E作DEx轴于点D,连结DC,当DCE的面积最大时,求点D的坐标;(3)在直线BC上是否存在一点P,使ACP为等腰三角形,若存在,求点P的坐标,若不存在,说明理由.15.(本题10分)已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数
11、y = 的图像上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.yPQMNOx12-1-2-3-3-2-1123(第23题图)(1)如图所示,若反比例函数解析式为y= ,P点坐标为(1, 0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标; (温馨提示:作图时,别忘了用黑色字迹的钢笔或签字笔描黑喔!)M1的坐标是 (2) 请你通过改变P点坐标,对直线M1 M的解析式ykxb进行探究可得 k , 若点P的坐标为(m,0)时,则b ;(3
12、) 依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标24.(本题12分)如图,把含有30角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为(3,0)和(0,3).动点P从A点开始沿折线AO-OB-BA运动,点P在AO,OB,BA上运动的面四民数学兴趣小组对捐款情况进行了抽样调查,速度分别为1,2 (长度单位/秒)一直尺的上边缘l从x轴的位置开始以 (长度单位/秒)的速度向上平行移动(即移动过程中保持lx轴),且分别与OB,AB交于E,F两点设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线AO-OB-BA运动一周时,直线l和动点P同时停止运动请解答下列问题
13、:(1)过A,B两点的直线解析式是 ;(2)当t4时,点P的坐标为 ;当t ,点P与点E重合; (3) 作点P关于直线EF的对称点P. 在运动过程中,若形成的四边形PEPF为菱形,则t的值是多少? 当t2时,是否存在着点Q,使得FEQ BEP ?若存在, 求出点Q的坐标;BFAPEOxy(第24题图)若不存在,请说明理由16 (本题满分12分)已知:函数y=ax2+x+1的图象与x轴只有一个公共点(1)求这个函数关系式;(2)如图所示,设二次函数y=ax2+x+1图象的顶点为B,与y轴的交点为A,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;(3)在(2)中,若圆
14、与x轴另一交点关于直线PB的对称点为M,试探索点M是否在抛物线y=ax2+x+1上,若在抛物线上,求出M点的坐标;若不在,请说明理由AxyOB(第24题)H17如图,RtABC中,C=90,BC=6,AC=8点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ点D,E分别是点A,B以Q,P为对称中心的对称点, HQAB于Q,交AC于点H当点E到达顶点A时,P,Q同时停止运动设BP的长为x,HDE的面积为y(1)求证:DHQABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,HDE为等腰三角形? 18.如图9,在平面直角坐标系中,已知
15、A、B、C三点的坐标分别为A(2,0),B(6,0),C(0,3).(1)求经过A、B、C三点的抛物线的解析式;(2)过点作CD平行于轴交抛物线于点D,写出D点的坐标,并求AD、BC的交点E的坐标;(3)若抛物线的顶点为,连结C、D,判断四边形CEDP的形状,并说明理由.19、(本题满分14分)如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C。(1)求抛物线的解析式;(2)若在第三象限的抛物线上存在点P,使PBC为以点B为直角顶点的直角三角形,求点P的坐标;(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形?若存
16、在,请求出点Q的坐标;若不存在,请说明理由。20(本题满分9分)如图,以A为顶点的抛物线与y轴交于点B已知A、B两点的坐标分别为(3,0)、(0,4) (1)求抛物线的解析式; (2)设M(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧若以M、B、O、A为顶点的四边形四条边的长度是四个连续的正整数,求点M的坐标; (3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P,PA2+PB2+PM228是否总成立?请说明理由21如图, 已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,DMN为等边三角形(点M的位置改变时, DMN也随之整
17、体移动) (1)如图,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由; (2)如图,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由 图图图第25题图ABCDEF22如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(8,0),点N的坐标为(6,4)(1)画出直角梯形OMNH绕点O旋转180的图形OA
18、BC,并写出顶点A,B,C的坐标(点M的对应点为A, 点N的对应点为B, 点H的对应点为C);(2)求出过A,B,C三点的抛物线的表达式; (3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由; (4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由第26题图1.(1)证明:连结OE EDOB1=2,3=OED,又OE=OD2=OED1=3 (1分)又OB=OB
19、 OE= OCBCOBEO(SAS) (2分)BEO=BCO=90 即OEABAB是O切线. (4分)(2)解:F=4,CD=2OC=10;由于CD为O的直径,在RtCDE中有: ED=CDsin4=CDsinDFE= (5分) (6分)在RtCEG中,EG= (7分)根据垂径定理得: (8分)2.解:(1) (2分)(2)依题意得: (4分)解得:25x40 (6分)(3) (8分)而253540, 当x=35时,即,月产量为35件时,利润最大,最大利润是1950万元(10分)3.解:(1)D点的坐标是. (2分)(2)连结OD,如图(1),由结论(1)知:D在COA的平分线上,则DOE=C
20、OD=45,又在梯形DOAB中,BAO=45,OD=AB=3由三角形外角定理得:1=DEA-45,又2=DEA-451=2, ODEAEF (4分),即:y与x的解析式为: (6分)(3)当AEF为等腰三角形时,存在EF=AF或EF=AE或AF=AE共3种情况.当EF=AF时,如图(2).FAE=FEA=DEF=45,AEF为等腰直角三角形.D在AE上(AEOA),B在AF上(AFEF)AEF与五边形OEFBC重叠的面积为四边形EFBD的面积.(也可用) (8分) 当EF=AE时,如图(3),此时AEF与五边形OEFBC重叠部分面积为AEF面积.DEF=EFA=45, DEAB , 又DBEA
21、四边形DEAB是平行四边形AE=DB= (10分)当AF=AE时,如图(4),四边形AEAF为菱形且AEF在五边形OEFBC内. 此时AEF与五边形OEFBC重叠部分面积为AEF面积. 由(2)知ODEAEF,则OD=OE=3 AE=AF=OA-OE= 过F作FHAE于H,则综上所述,AEF与五边形OEFBC重叠部分的面积为或1或 (12分)4解:(1)如图,抛物线y=ax2+bx+c(a 0)的图象经过点A(0,6),c=61分抛物线的图象又经过点(3,0)和(6,0), 2分解之,得 3分 故此抛物线的解析式为:y= x2+x+64分 (2)设点P的坐标为(m,0),则PC=6m,SABC
22、 = BCAO = 96=275分PEAB,CEPCAB6分 = ()2,即 = ( ) 2 SCEP = (6m)2.7分 SAPC = PCAO = (6m)6=3 (6m)SAPE = SAPCSCEP =3 (6m) (6m)2 = (m )2+.当m = 时,SAPE有最大面积为;此时,点P的坐标为(,0)8分(3)如图,过G作GHBC于点H,设点G的坐标为G(a,b),9分连接AG、GC, S梯形AOHG = a (b+6), SCHG = (6 a)b S四边形AOCG = a (b+6) + (6 a)b=3(a+b)10分 SAGC = S四边形AOCG SAOC =3(a+
23、b)1811分点G(a,b)在抛物线y= x2+x+6的图象上, b= a2+a+6. = 3(a a2+a+6)18 化简,得4a224a+27=0 解之,得a1= ,a2= 故点G的坐标为(,)或(,) 12分6、 解:(1)当BDAC4时,PAD是以AD为底边的等腰三角形P是优弧BAC的中点 弧PB弧PCPBPCBDAC4 PBD=PCAPBDPCAPA=PD 即PAD是以AD为底边的等腰三角形(2)由(1)可知,当BD4时,PDPA,ADAB-BD6-42过点P作PEAD于E,则AEAD=1PCB=PADcosPAD=cosPCB=PA=解:(1)ABECBD=30 在ABE中,AB6
24、BC=BE=CD=BCtan30=4OD=OC-CD=2B(,6) D(0,2)设BD所在直线的函数解析式是y=kx+b 所以BD所在直线的函数解析式是(2)EF=EA=ABtan30= FEG=180-FEB-AEB=60又FGOA FGEFsin60=3 GE=EFcos60= OG=OA-AE-GE=又H为FG中点H(,) 4分B(,6) 、 D(0,2)、 H(,)在抛物线图象上 抛物线的解析式是(2)MP=MN=6-H=MP-MN=由得该函数简图如图所示:当0x时,h0,即HPMN当x=时,h=0,即HP=MN当x0,即HPMN7(1)(2)2.510+5120+25635(米)(3
25、)(4)相等的关系8(1)a1,b2,c0(2)过P作直线x=1的垂线,可求P的纵坐标为,横坐标为.此时,MPMFPF1,故MPF为正三角形.(3)不存在.因为当t,x1时,PM与PN不可能相等,同理,当t,x1时,PM与PN不可能相等.9、 10.11. (本题满分10分)解:(1)OA=OC,A=ACO COB=2A ,COB=2PCB A=ACO=PCB 1分 AB是O的直径 ACO+OCB=90 2分 PCB+OCB=90,即OCCP 3分OC是O的半径 PC是O的切线 4分 (2)PC=AC A=P A=ACO=PCB=P COB=A+ACO,CBO=P+PCB CBO=COB 5分
26、 BC=OC BC=AB 6分 (3)连接MA,MB 点M是弧AB的中点 弧AM=弧BM ACM=BCM 7分 ACM=ABM BCM=ABM BMC=BMN MBNMCB BM2=MCMN 8分 AB是O的直径,弧AM=弧BM AMB=90,AM=BM AB=4 BM= 9分 MCMN=BM2=8 10分12. (本题满分10分) 解:(1)ACBD四边形ABCD的面积 2分 (2)过点A分别作AEBD,垂足为E 3分四边形ABCD为平行四边形 在RtAOE中, 4分 5分 四边形ABCD的面积 6分 (3)如图所示过点A,C分别作AEBD,CFBD,垂足分别为E,F 7分 在RtAOE中,
27、 同理可得 8分 10分 四边形ABCD的面积13. (本题满分11分) 解:(1)因抛物线经过坐标原点O(0,0)和点E(4,0)故可得c=0,b=4所以抛物线的解析式为1分由得当x=2时,该抛物线的最大值是4. 2分(2) 点P不在直线ME上. 已知M点的坐标为(2,4),E点的坐标为(4,0),设直线ME的关系式为y=kx+b.于是得 ,解得所以直线ME的关系式为y=-2x+8. 3分由已知条件易得,当时,OA=AP=,4分 P点的坐标不满足直线ME的关系式y=-2x+8. 来源:Zxxk.Com 当时,点P不在直线ME上. 5分以P、N、C、D为顶点的多边形面积可能为5 点A在x轴的非
28、负半轴上,且N在抛物线上, OA=AP=t. 点P,N的坐标分别为(t,t)、(t,-t 2+4t) 6分 AN=-t 2+4t (0t3) , AN-AP=(-t 2+4 t)- t=-t 2+3 t=t(3-t)0 , PN=-t 2+3 t 7分()当PN=0,即t=0或t=3时,以点P,N,C,D为顶点的多边形是三角形,此三角形的高为AD, S=DCAD=32=3. ()当PN0时,以点P,N,C,D为顶点的多边形是四边形 PNCD,ADCD, S=(CD+PN)AD=3+(-t 2+3 t)2=-t 2+3 t+38分当-t 2+3 t+3=5时,解得t=1、29分 而1、2都在0t
29、3范围内,故以P、N、C、D为顶点的多边形面积为5综上所述,当t=1、2时,以点P,N,C,D为顶点的多边形面积为5,当t=1时,此时N点的坐标(1,3)10分当t=2时,此时N点的坐标(2,4)11分说明:()中的关系式,当t=0和t=3时也适合.(故在阅卷时没有(),只有()也可以,不扣分)14. 解:(1)二次函数的图像经过点A(2,0)C(0,1) 解得: b= c=1-2分二次函数的解析式为 -3分(2)设点D的坐标为(m,0) (0m2) OD=m AD=2-m由ADEAOC得, -4分DE=-5分CDE的面积=m=当m=1时,CDE的面积最大点D的坐标为(1,0)-8分(3)存在
30、 由(1)知:二次函数的解析式为设y=0则 解得:x1=2 x2=1点B的坐标为(1,0) C(0,1)设直线BC的解析式为:y=kxb 解得:k=-1 b=-1直线BC的解析式为: y=x1在RtAOC中,AOC=900 OA=2 OC=1由勾股定理得:AC=点B(1,0) 点C(0,1)OB=OC BCO=450当以点C为顶点且PC=AC=时,设P(k, k1)过点P作PHy轴于HHCP=BCO=450CH=PH=k 在RtPCH中k2+k2= 解得k1=, k2=P1(,) P2(,)-10分以A为顶点,即AC=AP=设P(k, k1)过点P作PGx轴于GAG=2k GP=k1在RtAP
31、G中 AG2PG2=AP2(2k)2+(k1)2=5解得:k1=1,k2=0(舍)P3(1, 2) -11分以P为顶点,PC=AP设P(k, k1)过点P作PQy轴于点QPLx轴于点LL(k,0)QPC为等腰直角三角形 PQ=CQ=k由勾股定理知CP=PA=kAL=k-2, PL=k1在RtPLA中(k)2=(k2)2(k1)2解得:k=P4(,) -12分综上所述: 存在四个点:P1(,) P2(-,) P3(1, 2) P4(,)15(本题12分)BFAPEOxyGPP(图1)解:(1);4分 (2)(0,),;4分(各2分) (3)当点在线段上时,过作轴,为垂足(如图1) ,90 ,又,
32、60, 而,,BFAPEOxyMPH(图2) 由得 ;1分 当点P在线段上时,形成的是三角形,不存在菱形; 当点P在线段上时,过P作,、分别为垂足(如图2) , , 又 在Rt中, 即,解得1分BFAPEOxQBQCC1D1(图3)y存在理由如下: ,,,将绕点顺时针方向旋转90,得到(如图3) ,点在直线上,C点坐标为(,1) 过作,交于点Q,则 由,可得Q的坐标为(,)1分根据对称性可得,Q关于直线EF的对称点(,)也符合条件1分1-21AxyOBPMCQED16解:(1)当a = 0时,y = x+1,图象与x轴只有一个公共点(1分)当a0时,=1- 4a=0,a = ,此时,图象与x轴
33、只有一个公共点函数的解析式为:y=x+1 或y=x2+x+1(3分) (2)设P为二次函数图象上的一点,过点P作PCx 轴于点C是二次函数,由(1)知该函数关系式为:y=x2+x+1,则顶点为B(-2,0),图象与y轴的交点坐标为A(0,1)(4分)以PB为直径的圆与直线AB相切于点B PBAB 则PBC=BAO RtPCBRtBOA ,故PC=2BC,(5分)设P点的坐标为(x,y),ABO是锐角,PBA是直角,PBO是钝角,x-2BC=-2-x,PC=-4-2x,即y=-4-2x, P点的坐标为(x,-4-2x)点P在二次函数y=x2+x+1的图象上,-4-2x=x2+x+1(6分)解之得:x1=-2,x2=-10x-2 x=-10,P点的坐标为:(-10,16)(7分)(3)点M不在抛物线上(8分)由(2)知:C为圆与x 轴的另一交点,连接CM,CM与直线PB的交点为Q,过点M作x轴的垂线,垂足为D,取CD的中点E,连接QE,则CMPB,且CQ=MQ QEMD,QE=MD,QECECMPB,QECE PCx 轴 QCE=EQB=CPBtanQCE= tanEQB= tanCPB =CE=2QE=22BE=4BE,又CB=8,故BE=,QE=
限制150内