2015年高考数学江苏卷(共10页).doc
《2015年高考数学江苏卷(共10页).doc》由会员分享,可在线阅读,更多相关《2015年高考数学江苏卷(共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2015年普通高等学校招生全国统一考试(江苏卷)1已知集合,则集合中元素的个数为 【答案】5【解析】因为,所以该集合元素的个数为5 2已知一组数据4,6,5,8,7,6,那么这组数据的平均数为 【答案】6【解析】这6个数的和为36,故平均数为63设复数满足(是虚数单位),则的模为 【答案】While End While Print (第4题)【解析】设,则,结合条件得解得所以4根据如图所示的伪代码,可知输出的结果为 【答案】7【解析】 “追踪”循环体(就在图形的一旁标注,这样不容易出错):于是,输出5袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从
2、中一次随机摸出2只球,则这2只球颜色不同的概率为 【答案】【解析】从4个球中一次随机地取2个球,有6种取法:(白, 红),(白,黄1),(白,黄2),(红, 黄1),(红, 黄2),(黄1,黄2),其中,两个球不同颜色有5种取法,故所求概率为(或先求颜色相同的概率为,再用对立事件求)6已知向量,若,则的值为 【答案】【解析】由,得解得故7不等式的解集为 【答案】【解析】原不等式即,得,即,得解集为8已知,则的值为 【答案】3【解析】9现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底
3、面半径为 【答案】【解析】设新的圆锥与圆柱的底面半径都为,原圆锥的体积,由题意得,解得,即10在平面直角坐标系中,以点为圆心且与直线相切的所有圆中,半径最大的圆的标准方程为 【答案】【解析】直线,即,该直线过定点,以点为圆心且与直线相切的所有圆中,最大半径为这两点间的距离,故所求圆的标准方程为11.设数列满足,且,则数列前10项的和为 【答案】【解析】,将上面各式叠加得(也满足),所以.所以数列的前10项和12在平面直角坐标系中,为双曲线右支上的一个动点若点到直线的距离大于c恒成立,则实数c的最大值为 【答案】【解析】双曲线的一条渐近线与已知直线平行,由题意知,所求的最大值,即这两条直线间的距
4、离13已知函数,则方程实根的个数为 【答案】4;【解析】由,得,即或,问题转化为求函数与的图像交点个数.图2先画出的图像和的图像(图1),由图知与的图像有2个交点,与的图像也有2个交点(图2),共4个交点,即方程实根的个数为4图114设向量,则的值为 【答案】;解析:,于是,所以15在中,已知(1)求的长;(2)求的值解:(1)在中,由余弦定理得,所以.(2)在中,由正弦定理,得,所以.因为是最小边,所以为锐角.所以.(第16题)所以 16如图,在直三棱柱中,已知设的中点为,求证:(1)平面;(2)解:(1)因为三棱柱的侧面均为平行四边形,对角线互相平分,所以是的中点.又为的中点,所以为的中位
5、线,即.又平面,平面,所以平面.(2)因为棱柱是直三棱柱,所以平面,平面,所以,.又,所以为正方形.因为正方形对角线互相垂直平分,所以. 因为,且,所以平面.因为面,所以. 又,所以平面.因为平面,所以(第17题)17某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路.记两条相互垂直的公路为,山区边界曲线为,计划修建的公路为.如图所示,为的两个端点,测得点到的距离分别为5千米和40千米,点到的距离分别为20千米和千米.以所在的直线分别为轴,建立平面直角坐标系.假设曲线符合函数(其中为常数)模型.(1)求的值;(2)设公路与曲线相切于
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2015 年高 数学 江苏 10
限制150内