锐角三角函数导学案(共16页).doc
《锐角三角函数导学案(共16页).doc》由会员分享,可在线阅读,更多相关《锐角三角函数导学案(共16页).doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 年级 班级 姓名_ uuuuuuuuuuuuuuuuuu装uuuuuuuuuuuuuuuuuuuuu订uuuuuuuuuuuuuuuuuu线uuuuuuuuu静宁县双岘初级中学年级:九年级 课 型:新授课 使用时间:课题:281锐角三角函数(1) 执笔人:王爱斌 【学习目标】: 经历当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。 : 能根据正弦概念正确进行计算【设问导读】一、自学提纲:1、如图在RtABC中,C=90,A=30,BC=10m,求AB2、 如图在RtABC中,C=90,A=30,AB=20m,求BC3、问题: 为了绿化荒
2、山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌现测得斜坡与水平面所成角的度数是30,为使出水口的高度为35m,那么需要准备多长的水管?思考1:如果使出水口的高度为50m,那么需要准备多长的水管? ; 如果使出水口的高度为a m,那么需要准备多长的水管? ;结论:直角三角形中,30角的对边与斜边的比值 思考2:在RtABC中,C=90,A=45,A对边与斜边的比值是一个定值吗?如果是,是多少?结论:这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,A的对边与斜边的比 正弦函数概念:规定:在RtBC中,C=90,A的对边记作a,B
3、的对边记作b,C的对边记作c在RtBC中,C=90,我们把锐角A的对边与斜边的比叫做A的正弦,记作sinA,即sinA= = sinA例如,当A=30时,我们有sinA=sin30= ;当A=45时,我们有sinA=sin45= 结论:直角三角形中,45角的对边与斜边的比值 三、自学检测1三角形在正方形网格纸中的位置如图所示,则sin的值是 A B C D2如图,在直角ABC中,C90o,若AB5,AC4,则sinA( )A B C D3 在ABC中,C=90,BC=2,sinA=,则边AC的长是( )A B3 C D 4如图,已知点P的坐标是(a,b),则sin等于( )A B C 四、控顾
4、训练:1 如图,在RtABC中,C=90,求sinA和sinB的值 2、 做课本第64页练习五、课堂小结:在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,A的对边与斜边的比都是 在RtABC中,C=90,我们把锐角A的对边与斜边的比叫做A的 ,记作 , 六、作业设置:课本 第68页 习题281复习巩固第1题、第2题(只做与正弦函数有关的部分)七、自我反思:本节课我的收获: 。 年级 班级 姓名_ uuuuuuuuuuuuuuuuuu装uuuuuuuuuuuuuuuuuuuuu订uuuuuuuuuuuuuuuuuu线uuuuuuuuu静宁县双岘初级中学年级:九年级 课 型:新授课 使
5、用时间:课题:281锐角三角函数(2) 执笔人:王爱斌 审 核 人: 【学习目标】: 感知当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实。:逐步培养学生观察、比较、分析、概括的思维能力。【设问导读】一、自学提纲:1、我们是怎样定义直角三角形中一个锐角的正弦的?EOABCD2、如图,在RtABC中,ACB90,CDAB于点D。已知AC=,BC=2,那么sinACD( )ABCD3、如图,已知AB是O的直径,点C、D在O上,且AB5,BC3则sinBAC= ;sinADC= 4、在RtABC中,C=90,当锐角A确定时,A的对边与斜边的比是 ,现在我们要问:A的邻边与斜
6、边的比呢? A的对边与邻边的比呢?为什么?二、合作交流:探究:一般地,当A取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?如图:RtABC与RtABC,C=C =90o,B=B=,那么与有什么关系?三、教师点拨:类似于正弦的情况,如图在RtBC中,C=90,当锐角A的大小确定时,A的邻边与斜边的比、A的对边与邻边的比也分别是确定的我们把A的邻边与斜边的比叫做A的余弦,记作cosA,即cosA=;把A的对边与邻边的比叫做A的正切,记作tanA,即tanA=例如,当A=30时,我们有cosA=cos30= ;当A=45时,我们有tanA=tan45= (教师讲解并板书):锐角A的正弦
7、、余弦、正切都叫做A的锐角三角函数对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是A的函数同样地,cosA,tanA也是A的函数例2:如图,在RtABC中,C=90,BC=6,sinA=,求cosA、tanB的值四、控顾训练:练习一:完成课本P65 练习1、2、练习二:1.在中,C90,a,b,c分别是A、B、C的对边,则有() ABCD 本题主要考查锐解三角函数的定义,同学们只要依据的图形,不难写出,从而可判断C正确.2. 在中,C90,如果cos A=那么的值为() ABCD分析? 本题主要考查锐解三角函数及三角变换知识。其思路是:依据条件,可求出;再由,可求出,
8、从而,故应选D.3、如图:P是的边OA上一点,且P点的坐标为(3,4), 则cos_. 五、课堂小结:在RtBC中,C=90,我们把锐角A的对边与斜边的比叫做A的正弦,记作sinA,即sinA= = sinA把A的邻边与斜边的比叫做A的余弦,记作 ,即 把A的对边与邻边的比叫做A的正切,记作 ,即 六、作业设置:课本 第68页 习题281复习巩固第1题、第2题(只做与余弦、正切有关的部分)七、自我反思:本节课我的收获: 。 年级 班级 姓名_ uuuuuuuuuuuuuuuuuu装uuuuuuuuuuuuuuuuuuuuu订uuuuuuuuuuuuuuuuuu线uuuuuuuuu静宁县双岘初级
9、中学年级:九年级 课 型:新授课 使用时间:课题:281锐角三角函数(3) 执笔人:王爱斌 审 核 人: 【学习目标】: 能推导并熟记30、45、60角的三角函数值,并能根据这些值说出对应锐角度数。: 能熟练计算含有30、45、60角的三角函数的运算式【设问导读】一、自学提纲:一个直角三角形中,一个锐角正弦是怎么定义的? 一个锐角余弦是怎么定义的? 一个锐角正切是怎么定义的? 二、合作交流:思考:两块三角尺中有几个不同的锐角? 是多少度? 你能分别求出这几个锐角的正弦值、余弦值和正切值码? 归纳结果304560siaAcosAtanA三、自学检测1、求下列各式的值 (1)cos260+sin2
10、60 (2)-tan452:(1)如图(1),在RtABC中,C=90,AB=,BC=,求A的度数 (2)如图(2),已知圆锥的高AO等于圆锥的底面半径OB的倍,求a四、控顾训练:选择题1已知:RtABC中,C=90,cosA=,AB=15,则AC的长是( ) A3 B6 C9 D122下列各式中不正确的是( ) Asin260+cos260=1 Bsin30+cos30=1 Csin35=cos55 Dtan45sin453计算2sin30-2cos60+tan45的结果是( ) A2 B C D14在ABC中,A、B都是锐角,且sinA=,cosB=,则ABC的形状是( ) A直角三角形
11、B钝角三角形C锐角三角形 D不能确定5在ABC中,三边之比为a:b:c=1:2,则sinA+tanA等于( )A6已知梯形ABCD中,腰BC长为2,梯形对角线BD垂直平分AC,若梯形的高是,则CAB等于( ) A30 B60 C45 D以上都不对7sin272+sin218的值是( ) A1 B0 C D8若(tanA-3)2+2cosB-=0,则ABC( ) A是直角三角形 B是等边三角形 C是含有60的任意三角形 D是顶角为钝角的等腰三角形五、拓展延伸填空题1 设、均为锐角,且sin-cos=0,则+=_2的值是_3已知,等腰ABC的腰长为4,底为30,则底边上的高为_,周长为_4在RtA
12、BC中,C=90,已知tanB=,则cosA=_六、课堂小结:要牢记下表:304560siaAcosAtanA六、自我反思:本节课我的收获: 。 年级 班级 姓名_ uuuuuuuuuuuuuuuuuu装uuuuuuuuuuuuuuuuuuuuu订uuuuuuuuuuuuuuuuuu线uuuuuuuuu静宁县双岘初级中学年级:九年级 课 型:新授课 使用时间:课题:281锐角三角函数(4) 执笔人:王爱斌 审 核 人: 【学习目标】让学生熟识计算器一些功能键的使用【设问导读】求下列各式的值 (1)sin30cos45+cos60; (2)2sin60-2cos30sin45(3); (4)-s
13、in60(1-sin30) (5)tan45sin60-4sin30cos45+tan30(6)+cos45cos30合作交流:学生去完成课本67 68页 学生展示:用计算器求锐角的正弦、余弦、正切值学生去完成课本68页的题目 自我反思:本节课我的收获: 。 年级 班级 姓名_ uuuuuuuuuuuuuuuuuu装uuuuuuuuuuuuuuuuuuuuu订uuuuuuuuuuuuuuuuuu线uuuuuuuuu静宁县双岘初级中学年级:九年级 课 型:新授课 使用时间:课题:282解直角三角形(1) 执笔人:王爱斌 审 核 人: 【学习目标】: 使学生理解直角三角形中五个元素的关系,会运用勾
14、股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形: 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力: 渗透数形结合的数学思想,培养学生良好的学习习惯【设问导读】一、自学提纲:1在三角形中共有几个元素? 2直角三角形ABC中,C=90,a、b、c、A、B这五个元素间有哪些等量关系呢?(1)边角之间关系如果用表示直角三角形的一个锐角,那上述式子就可以写成.(2)三边之间关系 (3)锐角之间关系A+B=90a2 +b2 =c2 (勾股定理) 以上三点正是解直角三角形的依据二、合作交流:要想使人安全地攀上斜靠在墙面上的梯子的顶端
15、.梯子与地面所成的角一般要满足, (如图).现有一个长6m的梯子,问:(1)使用这个梯子最高可以安全攀上多高的墙(精确到0. 1 m)(2)当梯子底端距离墙面2.4 m时,梯子与地面所成的角等于多少(精确到1o)这时人是否能够安全使用这个梯子三、自学检测:1在ABC中,C为直角,A、B、C所对的边分别为a、b、c,且b=,a=,解这个三角形2在RtABC中, B =35o,b=20,解这个三角形四、控顾训练: 1根据直角三角形的_元素(至少有一个边),求出_其它所有元素的过程,即解直角三角形2、在RtABC中,a=104.0,b=20.49,解这个三角形3、在ABC中,C为直角,AC=6,的平
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 锐角三角 函数 导学案 16
限制150内