维纳滤波器图像处理.docx
《维纳滤波器图像处理.docx》由会员分享,可在线阅读,更多相关《维纳滤波器图像处理.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上维纳滤波器及其在图像处理中的应用摘要图像由于受到如模糊、失真、噪声等的影响,会造成图像质量的下降,形成退化的数字图像。退化的数字图像会造成图像中的目标很难识别或者图像中的特征无法提取,必须对其进行恢复。所谓图像复原就是指从所退化图像中复原出原始清晰图像的过程。维纳波是一种常见的图像复原方法,该方法的思想是使复原的图像与原图像的均方误差最小原则恢复原图像。本文进行了对退化图像进行图像复原的仿真实验,分别对加入了噪声的退化图像、运动模糊图像进行了维纳滤波复原,并给出了仿真实验效果以及结果分析。实验表明退化图像在有噪声时必须考虑图像的信噪比进行图像恢复,才能取得较好的复原效
2、果。关键词:维纳滤波;图像复原;运动模糊;退化图像Abstract Due to factors such as blurring distorting and noising, image quality deteriorated and led to degenerated digital images which is getting harder to discern the target image or extract the image features. Wiener Filter is often used to recover the degraded image. The
3、 principle of the method expects to minimize the mean square error between the recovered image and original image. This paper carried out a restoration simulation experiments on degraded image, restoration of motion blurred images, and the result shows, SNR noise of the autocorrelation function for
4、image restoration must be taken into consideration when restoring degraded images in a noise. Key words: Wiener Filter; motion blurred; degraded image; image restoration概述图像在形成、传输和记录的过程中都会受到诸多因素的影响,所获得的图像一般会有所下降,这种现象称为图像“退化”。因此我们可以采取一些技术手段来尽量减少甚至消除图像质量的下降,还原图像的本来面目,这就是图像复原。引起图像模糊有很多种的原因,举例来说有运动引起的,高
5、斯噪声引起的。图像恢复过程需要根据指定的图像退化模型来完成,根据退化模型对在某种情况下退化了的图像进行恢复,以获取到原始的未经过退化的原始图像,从而复原图像的本来面目。图像恢复的处理过程实际是对退化图像品质的提升,以此来达到图像在视觉上的改善。图像复原的算法:数字图像复原问题实际上是在一定的准则下,采用数学最优化方法从退化的图像去推测原图像的估计问题。不同的准则及不同的数学最优化方法就形成了各种各样的算法。常见的复原方法有,逆滤波复原算法,维纳滤波复原算法,盲卷积滤波复原算法,约束最小二乘滤波复原算法等等。图像复原是图像处理中的重要技术,图像复原可以在某种意义上对图像进行改进,即可以改善图像的
6、视觉效果,又能够便于后续处理。其中维纳滤波是最典型的一种,20世纪40年代,维纳奠定了最佳滤波器研究的基础。即假定输入时有用信号和噪声信号的合成,并且它们都是广义平稳过程和他们的二阶统计特性都已知。维纳根据最小均方准则(即滤波器的输出信号与需要信号的均方值最小),求得了最佳线性滤波器的参数,这种滤波器被称为维纳滤波器。由于基于维纳滤波器的图像复原效果比较好,具有一定的抑制噪声能力,近年来被广泛的应用到图象复原领域,维纳滤波算法得到不断的改进发发展,现在,许多有效的图像复原算法都在此基础形成的。维纳滤波的原理维纳滤波复原算法是由 C.W.Helstrom 于 1967 年提出的基于最小均方误差方
7、法,其基本思想是使原始图像和复原图像之间的均方误差最小的复原方法。1、 图像的退化模型要尽可能地恢复出被退化的图像的原来面目,就必须知道这种图像退化的机理和过程,然后建立相应模糊过程的退化数学模型,最终找出一种相应的反演的方法进行对退化图像的复原。所以图像复原的关键问题是在于建立退化模型,假设输入图像f(x,y)经过某个退化系统h(x,y)后产生退化图像g(x,y)。在退化过程中,引进的随机噪声为加性噪声n(x,y),则图像的退化过程如图所示: 其中,f(x,y)表示原始图像,h(x,y)表示为冲击响应函数,n(x,y)表示加性噪声,g(x,y)表示退化模糊图像(或称观测图像)。这是一种简单的
8、通用图像退化模型,输入图像f(x,y)经过一个退化系统或退化算子后产生的退化图像g(x,y),我们可以表示为下面的形式。 式中H为退化系统。这是连续形式下的表达。在实际应用中,处理的都是数字图像,所以对上式进行离散化如下: 上式两边进行傅里叶变换得 式中G(u,v),F(u,v),H(u,v)和N(u,v)分别是g(x,y),f(x,y) ,h(x,y)和n(x,y)的二维傅里叶变换。2、 维纳滤波进行图像恢复的原理维纳滤波是一种有约束的复原恢复,它综合了退化图像和噪声统计特性两个方面进行了复原处理。维纳滤波,它是使原图像f(x,y)及其恢复图像之间的均方差最小的复原方法,即: (4.27)式
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 滤波器 图像 处理
限制150内