基于DSP的实时语音处理设计(共14页).doc
《基于DSP的实时语音处理设计(共14页).doc》由会员分享,可在线阅读,更多相关《基于DSP的实时语音处理设计(共14页).doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上基于DSP的实时语音处理设计摘要:基于TMS320VC5402的音频信号采集与处理系统。介绍了该系统的总体方案和硬软件设计。讨论了模/数(A/D)和数/模(D/A)转换电路的设计方法以及如何利用TMS320VC5402的多通道缓冲同步串口(McBSP)和PCM1800及PCM1744芯片接口来实现音频信号的采集和输出。通过改变输入输出压缩比例自动控制增益的幅度,扩大了接收机的接受范围,它能够在输入信号幅度变化很大的情况下,使输出信号保持恒定或仅在较小范围内变化,不至于因为输入信号太小而无法正常工作,也不至于因为输入因为输入信号太大而使接收机发生饱和或阻塞。实验证明:所
2、设计的基于DSP的硬件和软件系统是一个很好的音频信号采集与处理系统。关键词:DSP , TMS320VC5402 , 多通道缓冲同步串口, 音频信号, 采集与处理专心-专注-专业1.绪言近年来,随着DSP技术的普及和低价格、高性能DSP芯片的出现,DSP已越来越多地被广大的工程师所接受,并越来越广泛地被应用于各个领域,例如:语音处理、图像处理、模式识别及工业控制等,并且已日益显示出其巨大的优越性。DSP是利用专门或通用的数字信号处理芯片,以数字计算的方法对信号进行处理,具有处理速度快、灵活、精确、抗干扰能力强、体积小及可靠性高等优点,满足了对信号快速、精确、实时处理及控制的要求。对实时数字信号
3、处理的应用需求和超大规模集成电路技术水平的飞速发展,推动着DSP性能不断提高。DSP是一种专用的数字信号处理器。随着超大规模集成电路技术上取得的突破进展,高度集成化的DSP数字信号处理器具有体积小、功耗低和运算速度快等诸多优点,因此非常适用于语音信号的压缩处理。基于DSP的实时语音处理系统,它具有可选择的信号采样速率和高性能的数字信号处理能力,不仅可以用来对立体音频信号进行实时编解码处理,还可以用来作为高速的实时信号采集与处理板使用。它包括多路语音实时采集,压缩处理,存储功能等基本功能。根据设计要求中的要点,所要设计的基于DSP的实时语音处理系统功能是,它能同时输入至少两路音频信号,而且能够对
4、两路输入信号进行实时采集并将模拟信号数字化,然后对信号进行数字信号处理,并能够根据要求存储不少于10小时的录音,最后输出音频信号。那么在设计系统过程中,为满足要求要有信号采集,模/数及数/模转换,数字信号处理部分,包括数据压缩等,电源电路,复位电路,时钟电路。信号特征分析音频信号经过高精度高速的ADC转换后得到一串数字信号,分帧输入到波形输入缓冲区RAM。然后由手动控制一种或几种处理算法将音频信号调入TMS320C5402的内部进行高速运算。经过处理的音频信号,再输入到高精度高速的DAC转换器中,还原成模拟的声音信号,经音箱功率放大电路放大输出。2.本设计的任务1.输入信号为2路语音信号,要求
5、系统能对2路输入信号进行实时采集、数字化处理、压缩、存储(录音),要保证一定的录音质量,录音时间不少于10小时。2.根据已知参数对输入信号特征进行分析、需求分析,选择确定DSP芯片型号、语音采集芯片型号,完成系统硬件设计。2.1本设计的实现方案1、系统结构框图:高精度高速音频信号ADC波形输入缓冲区RAMTMS320VC5402波形输出缓冲区RAM高精度高速音频信号DAC音频处理程序存储区EPROM语音信号存储器SDRAM电源复位电路图1 系统结构图音频系统应该具有较宽的动态范围,选择1624位的ADC和DAC能完全捕获或恢复高保真的音频信号。系统的核心芯片(DSP)选用美国TI公司的TMS3
6、20VC54021(以下简称C5402)。 2、 DSP芯片模块是整个实时语音处理系统的核心部分,它对经数字化的信号进行压缩,编解码等。A/D转换模块功能是把模拟信号数字化,包括采集和量化,这部分为DSP处理语音数字信号做好了准备;D/A转换模块就是把数字信号转换为模拟的信号,输出音频信号。SDRAM(动态随机存储器)存储器模块主要是为DSP处理器扩展存储容量,达到要求的存储容量;但要注意的是要与DSP处理器的速度相匹配,以便良好的运行。电源模块是为内部芯片及周边系统电路提供能量的部分。3、DSP处理器:作为DSP家族高性价比代表的16位定点DSP芯片,C5402适用于语音通信等实时嵌入应用场
7、合。与其它C54X芯片一样,C5402具有高度灵活的可操作性和高速的处理能力。其性能特点如下:操作速率可达100MIPS;具有先进的多总线结构,三条16位数据存储器总线和一条程序存储器总线;40位算术逻辑单元(ALU),包括一个40位桶形移位器和两个40位累加器;一个1717乘法器和一个40位专用加法器,允许16位带/不带符号的乘法;整合维特比加速器,用于提高维特比编译码的速度;单周期正规化及指数译码;8个辅助寄存器及一个软件栈,允许使用业界最先进的定点DSP C语言编译器;数据/程序寻址空间为1M16bit,内置4K16bit ROM和16k16bit RAM;内置可编程等待状态发生器、锁相
8、环(PLL)时钟产生器、两个多通道缓冲串口、一个与外部处理器通信的8位并行HPI口、两个16位定时器以及6通道DMA控制器且低功耗。与C54X系列的其它芯片相比,5402具有高性能、低功耗和低价格等特点。它采用6级流水线,且当RPT(重复指令)时,一些多周期的指令就变成了单周期的指令;芯片内部RAM和ROM可根据PMST寄存器中的OVLY和DROM位 可灵活设置。2.2、硬件设计1、C5402采用3.3V和1.8V电源供电,其中I/O采用3.3V电源供电,芯片的核采用1.8V电源供电。而实际常用的只有5V电源,所以必须采用电源转换芯片。选用TPS7301和TPS7333两块电源转换芯片(它们都
9、是TI公司为配合DSP而设计的电源转换芯片),分别接上适当的外围电阻,构成电阻分压器,即可调整两块芯片的输出电压分别为3.3V和1.8V。 2、A/D电路 PCM1800是双声道单片型20位ADC,单+5V电源供电,信噪比为95dB,动态范围为95dB,其内部嵌有高通滤波器,具有PCM音频接口和四种数据格式,分为主控和受控两种模式,采样频率可选为32kHz、44.1KHz和48KHz。3、 PCM1800构成音频信号采集系统时,主要涉及到BCK(位时钟信号)、LRCK(采样时钟信号)、FSYNC(帧同步信号)、DOUT(数字信号输出)、SYSCLK(系统时钟输入)这几个对时序有要求的引脚。通过
10、对引脚MODE0和MODE1进行编程,可让PCM1800工作于主控模式(Master Mode)。此时,BCK、LRCK、FSYNC均作为输出,其时序由PCM1800内部的时钟产生电路控制。但SYSCLK只能由外部提供(这里用C5402的TOUT脚输出信号提供)。 PCM1800的系统时钟只能是256fs、384fs或者512fs,这里fs是音频信号采样频率。在主控模式时,FSYNC用来指明PCM1800的DOUT输出的有效数据,它的上升沿表明一帧数据的起始,下降沿表明一帧数据的结束。FSYNC的频率是采样时钟频率LRCK的2倍。在此模式下,位时钟信号BCK的频率是采样时钟频率LRCK的64倍
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 DSP 实时 语音 处理 设计 14
限制150内