正弦定理和余弦定理详解(共13页).doc
《正弦定理和余弦定理详解(共13页).doc》由会员分享,可在线阅读,更多相关《正弦定理和余弦定理详解(共13页).doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高考风向1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查学习要领1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合基础知识梳理1 正弦定理:2R,其中R是三角形外接圆的半径由正弦定理可以变形:(1)abcsin_Asin_Bsin_C;(2)a2Rsin_A,b2Rsin_B,c2Rsin_C;(3)sin A,sin B,sin C等形式,解决不同的三角形问题2 余弦定理:a2b2c
2、22bccos_A,b2a2c22accos_B,c2a2b22abcos_C余弦定理可以变形:cos A,cos B,cos C.3 SABCabsin Cbcsin Aacsin B(abc)r(r是三角形内切圆的半径),并可由此计算R、r.4 在ABC中,已知a、b和A时,解的情况如下:A为锐角A为钝角或直角图形关系式absin Absin Aab解的个数一解两解一解一解难点正本疑点清源1在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在ABC中,ABabsin Asin B;tanA+tanB+tanC=tanAtanBtanC;在锐角三角形中,cosA
3、sinB,cosAsinC2 根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换例1已知在中,解三角形.思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边,然后用三角形内角和求出角,最后用正弦定理求出边.解析:, , ,又,总结升华:1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题;2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式.举一反三:【变式1】在中,已知,解三角形。【答案】根据三角形内角和定理,;根据正弦定理,;根据正弦定理,【变式2】在
4、中,已知,求、.【答案】,根据正弦定理,.【变式3】在中,已知,求 【答案】根据正弦定理,得.例2在,求:和,思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角,然后用三角形内角和求出角,最后用正弦定理求出边.解析:由正弦定理得:,(方法一), 或,当时,(舍去);当时,(方法二), , 即为锐角, ,总结升华:1. 正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题。2. 在利用正弦定理求角时,因为,所以要依据题意准确确定角的范围,再求出角.3.一般依据大边对大角或三角形内角和进行角的取舍.类型二:余弦定理的应用:例3已知中,、,求中的最大角。思路点拨:
5、首先依据大边对大角确定要求的角,然后用余弦定理求解.解析:三边中最大,其所对角最大,根据余弦定理:, , 故中的最大角是.总结升华: 1.中,若知道三边的长度或三边的关系式,求角的大小,一般用余弦定理;2.用余弦定理时,要注意公式中的边角位置关系.举一反三:【变式1】已知中, , , 求角.【答案】根据余弦定理:, 【变式2】在中,角所对的三边长分别为,若,求的各角的大小【答案】设,根据余弦定理得:,;同理可得;【变式3】在中,若,求角.【答案】, , 类型三:正、余弦定理的综合应用例4在中,已知,求及.思路点拨: 画出示意图,由其中的边角位置关系可以先用余弦定理求边,然后继续用余弦定理或正弦
6、定理求角.解析:由余弦定理得:=求可以利用余弦定理,也可以利用正弦定理:(法一:余弦定理) ,(法二:正弦定理) 又,即总结升华:画出示意图,数形结合,正确选用正弦、余弦定理,可以使解答更快、更好.举一反三:【变式1】在中,已知, , .求和.【答案】由余弦定理得:, 由正弦定理得:,因为为钝角,则为锐角, . .【变式2】在中,已知角所对的三边长分别为,若,求角和【答案】根据余弦定理可得: , ; 由正弦定理得:.其他应用题详解一、选择题(本大题共6小题,每小题5分,共30分)1如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20,灯塔B在观察站C的南
7、偏东40,则灯塔A与灯塔B的距离为()Aa km B.a kmC.a km D2a km解析利用余弦定理解ABC.易知ACB120,在ACB中,由余弦定理得AB2AC2BC22ACBCcos1202a22a23a2,ABa.答案B2张晓华同学骑电动自行车以24 km/h的速度沿着正北方向的公路行驶,在点A处望见电视塔S在电动车的北偏东30方向上,15 min后到点B处望见电视塔在电动车的北偏东75方向上,则电动车在点B时与电视塔S的距离是()A2 km B3 kmC3 km D2 km解析如图,由条件知AB246,在ABS中,BAS30,AB6,ABS18075105,所以ASB45.由正弦定
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正弦 定理 余弦 详解 13
限制150内