交直流课程设计(双闭环直流调速系统)(共35页).doc
《交直流课程设计(双闭环直流调速系统)(共35页).doc》由会员分享,可在线阅读,更多相关《交直流课程设计(双闭环直流调速系统)(共35页).doc(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 2012年度交直流调速课程设计 双闭环直流调速系统院 系: 专 业: 电气工程及其自动化 年 级: 学生姓名: 学 号: 指导教师: 摘 要为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环和多闭环系统)。直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流调速还是交流拖动系统的基础。该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消
2、除转速偏差,从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流关键词:双闭环;转速调节器;电流调节器;系统目 录第一章 转速、电流双闭环直流调速系统.41.1 转速电流双闭环直流调速系统的组成及其静特性.41.1.1 转速电流双闭环直流调速系统的组成.51.1.2双闭环直流调速系统的稳态结构框图和静特性.61.2 双闭环直流调速系统的数学模型和动态性能分析.81.2.1 双闭
3、环直流调速系统的动态数学模型.81.2.2 双闭环调速系统的起动过程分析.91.2.3 动态抗扰性能分析.101.2.4 转速和电流两个调节器的作用.11第二章 直流调速系统的方案设计.122.1 设计技术指标要求.122.2 现行方案的讨论与比较.122.3 选择PWM控制系统的理由.132.4 采用转速电流双闭环的理由.142.4.1 单闭环直流调速系统.142.4.2 双闭环直流调速系统.142.5 双闭环调速系统主电路的数学模型.152.5.1 主电路及其化简.152.5.2 晶闸管触发和整流装置传函.162.6 调速系统主电路的设计.172.6.1 整流变压器的计算.172.6.2
4、晶闸管组件的计算与选择.182.6.3 主电路的过电压和过电流保护.182.6.4 平波电抗器的参数计算.192.7双闭环系统的电气原理图.20第三章 双闭环调速系统调节器的设计.233.1工程设计方法的基本思路.233.2 电流调节器的设计.233.2.1 电流环动态结构图的简化.233.2.2 确定电流环的时间常数.243.3电流调节器结构的选择.243.3.1 电流调节器参数的计算.253.3.2 校验近似条件.263.3.3 计算调节器电阻和电容.263.4 转速调节器的设计.273.4.1 电流环的等效闭环传递函数.273.4.2 转速环的动态结构图及其近似处理.273.4.3 转速
5、调节器结构的选择.283.4.4 转速调解器参数的计算.28课程设计总结.33参考文献.34 第一章 转速、电流双闭环直流调速系统1.1 转速电流双闭环直流调速系统的组成及其静特性对于一个完整的系统而言,系统所要达到的性能指标、整个系统的综合性价比以及系统的运行稳定性、工作的可靠性等都是相当重要的,这就要求我们考虑问题要非常周全,能够考虑到各方面因素对整个系统运行所产生的影响。直流调速系统,传统上采用速度和电流的双闭环调速。这是从单闭环自动调速系统发展起来的。采用PI控制器的单闭环系统,虽然实现了转速的无静差调速,但因其结构中含有电流截止负反馈环节,限制了起制动的最大电流。加上电机反电势随着转
6、速的上升而增加,使电流达到最大值之后迅速降下来。这样,电动机的转速也减小下来,使起动过程变慢,起动时间增长。为了提高生产率和加工质量,要求尽量缩短过渡过程时间。我们希望使电流在起动时始终保持在最大允许值上,电动机输出最大转矩,从而可使转速直线上升过渡过程时间大大缩短。另一方面,在一个调节器的情况下,输入端综合几个信号,各参数互相影响,调整也比较困难。为获得近似理想的起动过程,并克服几个信号在一处的综合的缺点,经研究与实践,出现了转速、电流双闭环调速系统。在单闭环直流调速系统中,电流截止负反馈环节是专门用来控制电流的,但它只能在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的
7、控制电流的动态波形。带电流截止负反馈的单闭环直流调速系统起动电流和转速波形如图(1-1a)所示,起动电流突破以后,受电流负反馈的作用,电流只能再升高一点,经过某一最大值后,就降低下来,电机的电磁转矩也随之减小,因而加速过程必然拖长。 对于经常正反转运行的调速系统,尽量缩短起、制动过程的时间是提高生产率的重要因素。为此,在电机最大允许电流和转矩受限制的条件下,应该充分利用电机的过载能力,最好是在过渡过程中始终保持电流为允许的最大值,使电力拖动系统以最大的加速度起动,到达稳态转速时,立即让电流降下来,使转矩马上与负载相平衡,从而转入稳态运行。这样的理想起动过程波形示于图(1-1b)。这时,起动电流
8、呈方形波,转速按线性增长。这是在最大电流(转矩)受限制时调速系统所能获得的最快的起动过程。实际上,由于主电路电感的作用,电流不可能突跳,图(1-1b)所示的理想波形只能得到近似的逼近,不可能准确实现。为了实现在允许条件下的最快起动,关键是要获得一段使电流保持为最大值的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么,采用电流负反馈应该能够得到近似的恒流过程。a)带电流截止负反馈的单闭环直流调速系统起动过程 b)理想的快速起动过程 图1-1 直流调速系统起动过程的电流和转速波形1.1.1 转速电流双闭环直流调速系统的组成 为了实现转速和电流两种负反馈分别起作用,可在
9、系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者之间实行嵌套(或称串级)联接,如图1-2所示。图中,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速、电流双闭环调速系统。图1-2 转速电流双闭环直流调速系统ASR转速调节器 ACR电流调节器 TG测速发电机TA电流互感器 UPE电力电子变换器转速给定电压 转速反馈电压电流给定电压 电流反馈电压为了获得良好的静动态性能,转速和电流两个调节器一般都采用PI调节器,这样构成的双闭环直流调速系统的电路原理
10、图如上图2-3所示。 图中标出了两个调节器输入输出电压的实际极性,它们是按照电力电子变换器的控制电压为正电压的情况标出的,并考虑到运算放大器的倒相作用。图中还标出了两个调节器的输出都是带限幅作用的,转速调节器ASR的输出限幅电压决定了电流给定电压的最大值,电流调节器ACR的输出限幅电压限制了电力电子变换器的最大输出电压。图1-3 双闭环直流调速系统电路原理图1.1.2双闭环直流调速系统的稳态结构框图和静特性为了分析双闭环调速系统的静特性,必须先绘出它的稳态结构框图,如图1-4所示。它可以很方便地根据原理图(见图1-3)画出来,只要注意用带限幅的输出特性表示PI调节器就可以了。分析静特性的关键是
11、掌握这样的PI调节器的稳态特征,一般存在两种状况:饱和输出达到限幅值,不饱和输出未达到限幅值。当调节器饱和时,输出为恒值,输入量的变化不再影响输出,除非有反向的输入信号使调节器退出饱和;换句话说,饱和的调节器暂时隔断了输入和输出间的联系,相当于使该调节环开环。当调节器不饱和时,PI的作用使输入偏差电压在稳态时总为零。图1-4 双闭环直流调速系统的稳态结构图a转速反馈系数; b 电流反馈系数 Ks a 1/CeU*nUcIdEnUd0Un+-ASR+U*i- R b ACR-UiUPE实际上,在正常运行时,电流调节器是不会达到饱和状态的。因此,对于静特性来说,只有转速调节器饱和与不饱和两种情况。
12、转速调节器不饱和这时,两个调节器都不饱和,稳态时,它们的输入偏差电压都是零,因此 由第一个关系式可得 (1-1)从而得到图1-5所示静特性的CA段。与此同时,由于ASR不饱和,从上述第二个关系式可知。这就是说,CA段特性从理想空载状态的一直延续到,而一般都是大于额定电流的。这就是静特性的运行段,它是一条水平的特性。转速调节器饱和这时,ASR输出达到限幅值,转速外环呈开环状态,转速的变化对系统不再产生影响。双闭环系统变成一个电流无静差的单电流闭环调节系统。稳态时 (1-2)其中,最大电流是由设计者选定的,取决于电动机的容许过载能力和拖动系统允许的最大加速度。式(1-2)所描述的静特性对应于图1-
13、5中的AB段,它是一条垂直的特性。这样的下垂特性只适合于的情况,因为如果,则,ASR将退出饱和状态。双闭环调速系统的静特性在负载电流小于时表现为转速无静差,这时,转速负反馈起主要调节作用。当负载电流达到时,对应于转速调节器的饱和输出,这时,电流调节器起主要调节作用,系统表现为电流无静差,得到过电流的自动保护。这就是采用了两个PI调节器分别形成内外两个闭环的效果。这样的静特性显然比带电流截止负反馈的单闭环系统静特性好。然而,实际上运算放大器的开环放大系数并不是无穷大。静特性的两段实际上都略有很小的静差,见图2-5中的虚线。总之,双闭环系统在突加给定信号的过渡过程中表现为恒值电流调节系统,在稳定和
14、接近稳定运行中表现为无静差调速系统,发挥了转速和电流两个调节器的作用,获得了良好的静、动态品质。图1-5 双闭环直流调速系统的静特性1.2 双闭环直流调速系统的数学模型和动态性能分析1.2.1 双闭环直流调速系统的动态数学模型由双闭环控制的结构(见图1-6),即可绘制出双闭环直流调速系统的动态结构框图,如图3-1所示。图中和分别表示转速调节器和电流调节器的传递函数。为了引出电流反馈,在电动机的动态结构框图中必须把电枢电流显露出来。图1-6 双闭环直流调速系统的动态结构框图1.2.2 双闭环调速系统的起动过程分析我们知道设置双闭环控制的一个重要目的就是要获得接近于图1-7b) 所示的理想起动过程
15、,因此在分析双闭环直流调速系统的动态性能时,有必要首先探讨它的起动过程。双闭环直流调速系统突加给定电压由静止状态起动时,转速和电流的动态过程如图1-7 所示。由于在起动过程中转速调节器ASR经历了不饱和、饱和、退饱和三种情况,整个动态过程就分成图中标明的I、三个阶段。第I阶段是电流上升的阶段(0) 突加给定电压 后,经过两个调节器的跟随作用,都跟着上升,当时,电机还不能转动。当后,电机开始起动,由于机电惯性作用,转速不会很快增长,因而转速调节器ASR的输入偏差电压的数值仍较大,其输出电压保持限幅值,强迫电枢电流迅速上升。直到,电流调节器很快就压制了的增长,标志着这一阶段的结束。在这一阶段中,A
16、SR很快进入并保持饱和状态,而ACR一般不饱和。第阶段是恒流升速阶段() 在这个阶段中,ASR始终是饱和的,转速环相当于开环,系统成为在恒值电流给定下的电流调节系统,基本上保持电流恒定,因而系统的加速度恒定,转速呈线性增长。与此同时,电动机的反电动势E也按线性增长见图1-7,对电流调节系统来说,E是一个线性渐增的扰动量,为了克服这个扰动,和也必须基本上按线性增长,才能保持恒定。当ACR采用PI调节器时,要使其输出量按线性增长,其输入偏差电压必须维持一定的恒值,也就是说,应略低于。 恒流升速阶段是起动过程中的主要阶段。第阶段是转速调节阶段(以后) 当转速上升到给定值时,转速调节器ASR的输入偏差
17、减少到零,但其输出却由于积分作用还维持在限幅值,所以电动机仍在加速,使转速超调。转速超调后,ASR输入偏差电压变负,使它开始退出饱和状态,和很快下降。但是,只要仍大于负载电流,转速就继续上升。直到时,转矩,则dn/dt=0,转速n才到达峰值(t =时)。此后,电动机开始在负载的阻力下减速,与此相应,在时间内,直到稳定。如果调节器参数整定得不够好,也会有一段振荡过程。在最后的转速调节阶段内,ASR和ACR都不饱和,ASR起主导的转速调节作用,而ACR则力图使尽快地跟随其给定值,或者说,电流内环是一个电流随动子系统。图1-7 双闭环直流调速系统起动过程的转速和电流波形1.2.3 动态抗扰性能分析1
18、抗负载扰动对于调速系统,最重要的动态性能是抗扰性能。主要是抗负载扰动和抗电网电压扰动的性能。图1-8 直流调速系统的动态抗负载扰动作用由动态结构图中可以看出,负载扰动作用在电流环之后,因此只能靠转速调节器ASR来产生抗负载扰动的作用。在设计ASR时,应要求有较好的抗扰性能指标。 2抗电网电压扰动由图1-9a)和1-9b)对比分析可知1)单闭环调速系统中,电网电压扰动的作用点离被调量较远,调节作用受到多个环节的延滞,因此单闭环调速系统抵抗电压扰动的性能要差一些。a) 单闭环系统b)双闭环系统2)双闭环系统中,由于增设了电流内环,电压波动可以通过电流反馈得到比较及时的调节,不必等它影响到转速以后才
19、能反馈回来,抗扰性能大有改善。因此,在双闭环系统中,由电网电压波动引起的转速动态变化会比单闭环系统小得多。1.2.4 转速和电流两个调节器的作用综上所述,转速调节器和电流调节器在双闭环直流调速系统中的作用可分别归纳如下。1电流调节器作用1)作为内环的调节器,在转速外环的调节过程中,它的作用是使电流紧紧跟随其给定电压(即外环调节器的输出量)变化。2)对电网电压的波动起及时抗扰的作用。3)在转速动态过程中,保证获得电机允许的最大电流,从而加快动态过程。4)当电动机过载甚至堵转时,限制电枢电流的最大值,起快速的自动保护作用。一旦故障消失,系统立即自动恢复正常。这个作用对系统的可靠运行来说是十分重要的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直流 课程设计 闭环 调速 系统 35
限制150内